this repo has no description
1opam-version: "2.0" 2authors: "Francois Berenger" 3maintainer: "unixjunkie@sdf.org" 4homepage: "https://github.com/UnixJunkie/linwrap" 5bug-reports: "https://github.com/UnixJunkie/linwrap/issues" 6dev-repo: "git+https://github.com/UnixJunkie/linwrap.git" 7license: "BSD-3-Clause" 8build: ["dune" "build" "-p" name "-j" jobs] 9install: [ 10 ["cp" "bin/ecfp6.py" "%{bin}%/linwrap_ecfp6.py"] 11] 12depends: [ 13 "base-unix" 14 "batteries" 15 "conf-liblinear-tools" 16 "conf-python-3" 17 "conf-rdkit" 18 "cpm" {>= "4.0.0"} 19 "dokeysto_camltc" 20 "dolog" {>= "4.0.0" & < "5.0.0"} 21 "dune" {>= "1.10"} 22 "minicli" {>= "5.0.0"} 23 "parany" {>= "6.0.0" & < "10.0.0"} 24] 25synopsis: "Wrapper around liblinear-tools" 26description: """ 27Only L2-regularized logistic regression is supported currently. 28When using bagging, each model is trained on balanced bootstraps 29from the training set (one bootstrap for the positive class, 30one for the negative class). 31The size of the bootstrap is the size of the smallest (under-represented) 32class. 33 34usage: linwrap 35 -i <filename>: training set or DB to screen 36 [-o <filename>]: predictions output file 37 [-np <int>]: ncores 38 [-c <float>]: fix C 39 [-w <float>]: fix w1 40 [-k <int>]: number of bags for bagging (default=off) 41 [-n <int>]: folds of cross validation 42 [--seed <int>]: fix random seed 43 [-p <float>]: training set portion (in [0.0:1.0]) 44 [--train <train.liblin>]: training set (overrides -p) 45 [--valid <valid.liblin>]: validation set (overrides -p) 46 [--test <test.liblin>]: test set (overrides -p) 47 [{-l|--load} <filename>]: prod. mode; use trained models 48 [{-s|--save} <filename>]: train. mode; save trained models 49 [-f]: force overwriting existing model file 50 [--scan-c]: scan for best C 51 [--scan-w]: scan weight to counter class imbalance 52 [--scan-k]: scan number of bags (advice: optim. k rather than w) 53""" 54url { 55 src: "https://github.com/UnixJunkie/linwrap/archive/v5.0.0.tar.gz" 56 checksum: [ 57 "sha256=2e2f573ae5102a575ad70acdeaf84673a0b8ec6eac60dd3601dd79dfddc5c596" 58 "md5=3407f24bc31cfdbafa6141aced22ce81" 59 ] 60}