this repo has no description
1opam-version: "2.0" 2authors: "Francois Berenger" 3maintainer: "unixjunkie@sdf.org" 4homepage: "https://github.com/UnixJunkie/linwrap" 5bug-reports: "https://github.com/UnixJunkie/linwrap/issues" 6dev-repo: "git+https://github.com/UnixJunkie/linwrap.git" 7license: "BSD-3-Clause" 8build: ["dune" "build" "-p" name "-j" jobs] 9install: [ 10 ["cp" "bin/ecfp6.py" "%{bin}%/linwrap_ecfp6.py"] 11] 12depends: [ 13 "base-unix" 14 "batteries" 15 "conf-liblinear-tools" 16 "conf-liblinear-tools" 17 "conf-python-3" 18 "conf-rdkit" 19 "cpm" {>= "4.0.0"} 20 "dokeysto_camltc" 21 "dolog" {>= "4.0.0" & < "5.0.0"} 22 "dune" {>= "1.10"} 23 "minicli" 24 "parany" {>= "6.0.0" & < "10.0.0"} 25] 26synopsis: "Wrapper around liblinear-tools" 27description: """ 28Only L2-regularized logistic regression is supported currently. 29When using bagging, each model is trained on balanced bootstraps 30from the training set (one bootstrap for the positive class, 31one for the negative class). 32The size of the bootstrap is the size of the smallest (under-represented) 33class. 34 35usage: linwrap 36 -i <filename>: training set or DB to screen 37 [-o <filename>]: predictions output file 38 [-np <int>]: ncores 39 [-c <float>]: fix C 40 [-w <float>]: fix w1 41 [-k <int>]: number of bags for bagging (default=off) 42 [-n <int>]: folds of cross validation 43 [--seed <int>]: fix random seed 44 [-p <float>]: training set portion (in [0.0:1.0]) 45 [--train <train.liblin>]: training set (overrides -p) 46 [--valid <valid.liblin>]: validation set (overrides -p) 47 [--test <test.liblin>]: test set (overrides -p) 48 [{-l|--load} <filename>]: prod. mode; use trained models 49 [{-s|--save} <filename>]: train. mode; save trained models 50 [-f]: force overwriting existing model file 51 [--scan-c]: scan for best C 52 [--scan-w]: scan weight to counter class imbalance 53 [--scan-k]: scan number of bags (advice: optim. k rather than w) 54""" 55url { 56 src: "https://github.com/UnixJunkie/linwrap/archive/v4.0.0.tar.gz" 57 checksum: [ 58 "sha256=1d0c96b7c0dde9ae8101947bbff321c5e64aaf99d7b790e680f8e9fee77cd16a" 59 "md5=217f5f1cac3f521a8877f0dbc9bd2c8a" 60 ] 61}