this repo has no description
1opam-version: "2.0" 2maintainer: "unixjunkie@sdf.org" 3authors: ["Francois BERENGER"] 4homepage: "https://github.com/UnixJunkie/orrandomForest" 5bug-reports: "https://github.com/UnixJunkie/orrandomForest/issues" 6dev-repo: "git+https://github.com/UnixJunkie/orrandomForest.git" 7license: "LGPL-2.1-only WITH OCaml-LGPL-linking-exception" 8build: [ 9 ["R" "CMD" "BATCH" "install_randomForest.r"] 10 ["R" "CMD" "BATCH" "install_matrix.r"] 11 ["jbuilder" "build" "-p" name "-j" jobs] 12] 13depends: [ 14 "ocaml" 15 "dune" 16 "dolog" {< "4.0.0"} 17 "conf-r" 18 "conf-gnuplot" {with-test} 19] 20x-ci-accept-failures: ["debian-unstable"] 21post-messages: [ 22"Please interact with R to install needed things in user-space: 23R 24install.packages('Marix', repos='http://cran.r-project.org') 25install.packages('randomForest', repos='http://cran.r-project.org')" {failure} 26] 27synopsis: "Classification or regression using Random Forests" 28description: """ 29Uses the R randomForest package under the carpet. 30This package really fires up and talks to an R interpreter. 31Data are exchanged via text files. 32For details, cf. 33Breiman, L., 2001. Random forests. Machine learning, 45(1), pp.5-32 34(DOI = 10.1023/A:1010933404324).""" 35url { 36 src: "https://github.com/UnixJunkie/orrandomForest/archive/v1.0.0.tar.gz" 37 checksum: [ 38 "sha256=b9c134908e2942668d6822c4f895290dccad627541842f7acd3db13614655612" 39 "md5=89e87dbe7d4f8a14d0610b12de5fa5f9" 40 ] 41} 42extra-source "install_randomForest.r" { 43 src: 44 "https://raw.githubusercontent.com/ocaml/opam-source-archives/main/patches/orrandomForest/install_randomForest.r" 45 checksum: [ 46 "sha256=27d9a59a4fc61b6536f5dd59077daa17725ab9af0804c8e0b3a9d4d8eae00673" 47 "md5=c39ce051de6937deb5095a1906d86c0c" 48 ] 49} 50extra-source "install_matrix.r" { 51 src: 52 "https://raw.githubusercontent.com/ocaml/opam-source-archives/main/patches/orrandomForest/install_matrix.r" 53 checksum: [ 54 "sha256=f9d596d2caae65cdb8440f85f3e903e802643e4d6a639ad5a148727b4fe84d23" 55 "md5=ab1c0ae726388159b1315bc9fe61a013" 56 ] 57}