this repo has no description
1opam-version: "2.0"
2maintainer: "unixjunkie@sdf.org"
3authors: ["Francois BERENGER"]
4homepage: "https://github.com/UnixJunkie/orrandomForest"
5bug-reports: "https://github.com/UnixJunkie/orrandomForest/issues"
6dev-repo: "git+https://github.com/UnixJunkie/orrandomForest.git"
7license: "LGPL-2.1-only WITH OCaml-LGPL-linking-exception"
8build: [
9 ["R" "CMD" "BATCH" "install_randomForest.r"]
10 ["R" "CMD" "BATCH" "install_matrix.r"]
11 ["jbuilder" "build" "-p" name "-j" jobs]
12]
13depends: [
14 "ocaml"
15 "dune"
16 "dolog" {< "4.0.0"}
17 "conf-r"
18 "conf-gnuplot" {with-test}
19]
20x-ci-accept-failures: ["debian-unstable"]
21post-messages: [
22"Please interact with R to install needed things in user-space:
23R
24install.packages('Marix', repos='http://cran.r-project.org')
25install.packages('randomForest', repos='http://cran.r-project.org')" {failure}
26]
27synopsis: "Classification or regression using Random Forests"
28description: """
29Uses the R randomForest package under the carpet.
30This package really fires up and talks to an R interpreter.
31Data are exchanged via text files.
32For details, cf.
33Breiman, L., 2001. Random forests. Machine learning, 45(1), pp.5-32
34(DOI = 10.1023/A:1010933404324)."""
35url {
36 src: "https://github.com/UnixJunkie/orrandomForest/archive/v1.0.0.tar.gz"
37 checksum: [
38 "sha256=b9c134908e2942668d6822c4f895290dccad627541842f7acd3db13614655612"
39 "md5=89e87dbe7d4f8a14d0610b12de5fa5f9"
40 ]
41}
42extra-source "install_randomForest.r" {
43 src:
44 "https://raw.githubusercontent.com/ocaml/opam-source-archives/main/patches/orrandomForest/install_randomForest.r"
45 checksum: [
46 "sha256=27d9a59a4fc61b6536f5dd59077daa17725ab9af0804c8e0b3a9d4d8eae00673"
47 "md5=c39ce051de6937deb5095a1906d86c0c"
48 ]
49}
50extra-source "install_matrix.r" {
51 src:
52 "https://raw.githubusercontent.com/ocaml/opam-source-archives/main/patches/orrandomForest/install_matrix.r"
53 checksum: [
54 "sha256=f9d596d2caae65cdb8440f85f3e903e802643e4d6a639ad5a148727b4fe84d23"
55 "md5=ab1c0ae726388159b1315bc9fe61a013"
56 ]
57}