Thicket data repository for the EEG
at main 3.3 kB view raw
1{ 2 "id": "urn:uuid:fd52ec3b-5a92-480a-ab72-ab8ddc426352", 3 "title": "Week 4", 4 "link": "https://dakpro.github.io/project_feeds/low_power_speech_recognition/week4", 5 "updated": "2025-08-08T15:07:00", 6 "published": "2025-08-10T19:12:43.300725", 7 "summary": "<h2>Week 4</h2>\n<p><a href=\"https://github.com/DakPro/low_power_speech_recognition\">Repo</a> for the project code.\nMany of the used services use huggingface client, so setting up huggingface access token is recommended. </p>\n<h4>Setting up access token</h4>\n<ol>\n<li>Login in <a href=\"https://huggingface.co\">huggingface</a></li>\n<li>Goto <a href=\"https://huggingface.co/settings/profile\">Settings</a></li>\n<li>Goto Access tokens</li>\n<li>Create a new token (read-only recommended)</li>\n</ol>\n<h4>Using access token</h4>\n<ol>\n<li><code>brew install huggingface-cli</code></li>\n<li><code> hf auth login </code></li>\n<li>Input the access token</li>\n</ol>\n<p>When making requests to huggingface client, programs will automatically use the token.</p>\n<h3>Planned structure of the repo</h3>\n<ul>\n<li>Outer file <code> transcription_from_mic.py</code>: given a model name runs \na runtime transcription demo.</li>\n<li>Outer file <code> transcription_from_file.py</code>: given a model name and file \ntranscribes the file. </li>\n<li>Separate directory for each model, includes<ul>\n<li>The irreplaceable part of model pipeline (usually copied from the model source)</li>\n<li>Some stuff used before (like reports, scripts)?</li>\n<li>Interface to use the model, both for demo (with printing captions) and production</li>\n</ul>\n</li>\n<li>Directory for testing - for interaction with datasets</li>\n</ul>", 8 "content": "<h2>Week 4</h2>\n<p><a href=\"https://github.com/DakPro/low_power_speech_recognition\">Repo</a> for the project code.\nMany of the used services use huggingface client, so setting up huggingface access token is recommended. </p>\n<h4>Setting up access token</h4>\n<ol>\n<li>Login in <a href=\"https://huggingface.co\">huggingface</a></li>\n<li>Goto <a href=\"https://huggingface.co/settings/profile\">Settings</a></li>\n<li>Goto Access tokens</li>\n<li>Create a new token (read-only recommended)</li>\n</ol>\n<h4>Using access token</h4>\n<ol>\n<li><code>brew install huggingface-cli</code></li>\n<li><code> hf auth login </code></li>\n<li>Input the access token</li>\n</ol>\n<p>When making requests to huggingface client, programs will automatically use the token.</p>\n<h3>Planned structure of the repo</h3>\n<ul>\n<li>Outer file <code> transcription_from_mic.py</code>: given a model name runs \na runtime transcription demo.</li>\n<li>Outer file <code> transcription_from_file.py</code>: given a model name and file \ntranscribes the file. </li>\n<li>Separate directory for each model, includes<ul>\n<li>The irreplaceable part of model pipeline (usually copied from the model source)</li>\n<li>Some stuff used before (like reports, scripts)?</li>\n<li>Interface to use the model, both for demo (with printing captions) and production</li>\n</ul>\n</li>\n<li>Directory for testing - for interaction with datasets</li>\n</ul>", 9 "content_type": "html", 10 "categories": [], 11 "source": "https://dakpro.github.io/project_feeds/low_power_speech_recognition/feed.xml" 12}