this repo has no description
at develop 3.8 kB view raw
1/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */ 2/* 3 * Main authors: 4 * Vincent Barichard <Vincent.Barichard@univ-angers.fr> 5 * 6 * Copyright: 7 * Vincent Barichard, 2012 8 * 9 * This file is part of Gecode, the generic constraint 10 * development environment: 11 * http://www.gecode.org 12 * 13 * Permission is hereby granted, free of charge, to any person obtaining 14 * a copy of this software and associated documentation files (the 15 * "Software"), to deal in the Software without restriction, including 16 * without limitation the rights to use, copy, modify, merge, publish, 17 * distribute, sublicense, and/or sell copies of the Software, and to 18 * permit persons to whom the Software is furnished to do so, subject to 19 * the following conditions: 20 * 21 * The above copyright notice and this permission notice shall be 22 * included in all copies or substantial portions of the Software. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 28 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION 29 * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION 30 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 31 * 32 */ 33 34#include <gecode/driver.hh> 35 36#include <gecode/minimodel.hh> 37#include <gecode/float.hh> 38 39using namespace Gecode; 40 41/** 42 * \brief %Example: Archimedean spiral 43 * 44 * The Archimedean Spiral is a spiral where all points 45 * corresponding to the locations over time of a point moving 46 * away from a fixed point with a constant speed along a line 47 * which rotates with constant angular velocity. It is defined 48 * by the polar equation: 49 * \f[ r = a+b\theta \f] 50 * 51 * To get cartesian coordinates, it can be solved for \f$x\f$ 52 * and \f$y\f$ in terms of \f$r\f$ and \f$\theta\f$. 53 * By setting \f$a=1\f$ and \f$b=1\f$, it yields to the equation: 54 * 55 * \f[ r = \theta \f] with \f[ x=r\operatorname{cos}(\theta), 56 * \quad y=r\operatorname{sin}(\theta) \f] 57 * 58 * The tuple \f$(r,\theta)\f$ is related to the position for 59 * \f$x\f$ and \f$y\f$ on the curve. \f$r\f$ and \f$\theta\f$ 60 * are positive numbers. 61 * 62 * To get reasonable interval starting * sizes, \f$x\f$ and 63 * \f$y\f$ are restricted to \f$[-20;20]\f$. 64 * 65 * \ingroup Example 66 */ 67class ArchimedeanSpiral : public FloatMaximizeScript { 68protected: 69 /// The numbers 70 FloatVarArray f; 71public: 72 /// Actual model 73 ArchimedeanSpiral(const Options& opt) 74 : FloatMaximizeScript(opt), f(*this,4,-20,20) { 75 // Post equation 76 FloatVar theta = f[0]; 77 FloatVar r = f[3]; 78 FloatVar x = f[1]; 79 FloatVar y = f[2]; 80 81 rel(*this, theta >= 0); 82 rel(*this, theta <= 6*FloatVal::pi()); 83 rel(*this, r >= 0); 84 rel(*this, r*cos(theta) == x); 85 rel(*this, r*sin(theta) == y); 86 rel(*this, r == theta); 87 88 branch(*this,f[0],FLOAT_VAL_SPLIT_MIN()); 89 } 90 /// Constructor for cloning \a p 91 ArchimedeanSpiral(ArchimedeanSpiral& p) 92 : FloatMaximizeScript(p) { 93 f.update(*this, p.f); 94 } 95 /// Copy during cloning 96 virtual Space* copy(void) { 97 return new ArchimedeanSpiral(*this); 98 } 99 /// Cost function 100 virtual FloatVar cost(void) const { 101 return f[0]; 102 } 103 /// Print solution coordinates 104 virtual void print(std::ostream& os) const { 105 os << "XY " << f[1].med() << " " << f[2].med() 106 << std::endl; 107 } 108 109}; 110 111/** \brief Main-function 112 * \relates ArchimedeanSpiral 113 */ 114int main(int argc, char* argv[]) { 115 Options opt("ArchimedeanSpiral"); 116 opt.solutions(0); 117 opt.step(0.1); 118 opt.parse(argc,argv); 119 FloatMaximizeScript::run<ArchimedeanSpiral,BAB,Options>(opt); 120 return 0; 121} 122 123// STATISTICS: example-any