this repo has no description
at develop 10 kB view raw
1/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */ 2/* 3 * Main authors: 4 * Mikael Lagerkvist <lagerkvist@gecode.org> 5 * 6 * Copyright: 7 * Mikael Lagerkvist, 2006 8 * 9 * This file is part of Gecode, the generic constraint 10 * development environment: 11 * http://www.gecode.org 12 * 13 * Permission is hereby granted, free of charge, to any person obtaining 14 * a copy of this software and associated documentation files (the 15 * "Software"), to deal in the Software without restriction, including 16 * without limitation the rights to use, copy, modify, merge, publish, 17 * distribute, sublicense, and/or sell copies of the Software, and to 18 * permit persons to whom the Software is furnished to do so, subject to 19 * the following conditions: 20 * 21 * The above copyright notice and this permission notice shall be 22 * included in all copies or substantial portions of the Software. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 28 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION 29 * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION 30 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 31 * 32 */ 33 34#include <gecode/driver.hh> 35#include <gecode/int.hh> 36 37#include <vector> 38#include <algorithm> 39#include <sstream> 40 41using namespace Gecode; 42 43namespace { 44 45 using std::vector; 46 47 /// Layout of the cards 48 vector<vector<int> > layout; 49 /// information for locating particular cards in the layout 50 vector<int> layer, pile; 51 52 /** \brief Generates\ref layout. 53 * 54 * This function generates the layeout and intializes \ref layer and 55 * \ref pile from it. The layout is randomly generated from the 56 * supplied seed. 57 */ 58 void generate(int seed) { 59 // The layout consists of 17 piles of 3 cards each 60 layout = vector<vector<int> >(17, vector<int>(3)); 61 // Deck without the Ace of Spades 62 vector<int> deck(51); 63 for (int i = 51; i--; ) deck[i] = i+1; 64 Support::RandomGenerator rnd(seed+1); 65 std::random_shuffle(deck.begin(), deck.end(), rnd); 66 67 // Place cards from deck 68 int pos = 0; 69 for (int i = 17; i--; ) 70 for (int j = 3; j--; ) 71 layout[i][j] = deck[pos++]; 72 73 // Location-information for each card 74 layer = vector<int>(52); 75 pile = vector<int>(52); 76 for (int i = 17; i--; ) { 77 for (int j = 3; j--; ) { 78 layer[layout[i][j]] = j; 79 pile[ layout[i][j]] = i; 80 } 81 } 82 } 83} 84 85/** 86 * \brief %Example: Black hole patience 87 * 88 * This example solves instances of the black-hole patience game. 89 * 90 * The model of the problem is mostly taken from "Search in the 91 * Patience Game 'Black Hole'", by Ian P. Gent, Chris Jefferson, Tom 92 * Kelsey, Inês Lynce, Ian Miguel, Peter Nightingale, Barbara 93 * M. Smith, and S. Armagan Tarim. 94 * 95 * The conditional symmetry identified in the above paper can be 96 * eliminated (enabled by default). 97 * 98 * \ingroup Example 99 * 100 */ 101class BlackHole : public Script { 102protected: 103 IntVarArray x, ///< Card at position 104 y; ///< Position of card 105 106 /// Return a string representing the card of value val 107 std::string 108 card(int val) const { 109 const char* suit = "SCHD"; 110 std::ostringstream o; 111 o << std::setw(2) << (1 + (val%13)) << suit[val/13]; 112 return o.str(); 113 } 114 115public: 116 /// Symmetry variants 117 enum { 118 SYMMETRY_NONE, ///< No symmetry breaking 119 SYMMETRY_CONDITIONAL ///< Breaking conditional symmetries 120 }; 121 /// Propagation of placement-rules 122 enum { 123 PROPAGATION_REIFIED, ///< Reified propagation 124 PROPAGATION_DFA, ///< Extensional propagation using automatons 125 PROPAGATION_TUPLE_SET ///< Extensional propagation using tables 126 }; 127 /// Actual model 128 BlackHole(const SizeOptions& opt) 129 : Script(opt), x(*this, 52, 0,51), y(*this, 52, 0,51) { 130 // Black ace at bottom 131 rel(*this, x[0], IRT_EQ, 0); 132 133 // x is order and y is placement 134 channel(*this, x, y, opt.ipl()); 135 136 // The placement rules: the absolute value of the difference 137 // between two consecutive cards is 1 or 12. 138 if (opt.propagation() == PROPAGATION_REIFIED) { 139 // Build table for accessing the rank of a card 140 IntArgs modtable(52); 141 for (int i = 0; i < 52; ++i) { 142 modtable[i] = i%13; 143 } 144 for (int i = 0; i < 51; ++i) { 145 IntVar x1(*this, 0, 12), x2(*this, 0, 12); 146 element(*this, modtable, x[i], x1); 147 element(*this, modtable, x[i+1], x2); 148 const int dr[2] = {1, 12}; 149 IntVar diff(*this, IntSet(dr, 2)); 150 rel(*this, abs(x1-x2) == diff, IPL_DOM); 151 } 152 } else if (opt.propagation() == PROPAGATION_DFA) { 153 // Build table for allowed tuples 154 REG expression; 155 for (int r = 13; r--; ) { 156 for (int s1 = 4; s1--; ) { 157 for (int s2 = 4; s2--; ) { 158 for (int i = -1; i <= 1; i+=2) { 159 REG r1 = REG(r+13*s1); 160 REG r2 = REG((r+i+52+13*s2)%52); 161 REG r = r1 + r2; 162 expression |= r; 163 } 164 } 165 } 166 } 167 DFA table(expression); 168 169 for (int i = 51; i--; ) 170 extensional(*this, IntVarArgs({x[i],x[i+1]}), table); 171 172 } else { // opt.propagation() == PROPAGATION_TUPLE_SET) 173 // Build table for allowed tuples 174 TupleSet ts(2); 175 for (int r = 13; r--; ) 176 for (int s1 = 4; s1--; ) 177 for (int s2 = 4; s2--; ) 178 for (int i = -1; i <= 1; i+=2) 179 ts.add({r+13*s1, (r+i+52+13*s2)%52}); 180 ts.finalize(); 181 182 for (int i = 51; i--; ) 183 extensional(*this, IntVarArgs({x[i],x[i+1]}), ts); 184 } 185 186 // A card must be played before the one under it. 187 for (int i = 17; i--; ) 188 for (int j = 2; j--; ) 189 rel(*this, y[layout[i][j]] < y[layout[i][j+1]]); 190 191 // Compute and break the conditional symmetries that are dependent 192 // on the current layout. 193 // Two cards with the same rank but different suits are symmetric 194 // with respect to their placement in the black hole if changing 195 // their order does not affect any other card. 196 if (opt.symmetry() == SYMMETRY_CONDITIONAL) { 197 // For all ranks 198 for (int r = 13; r--; ) { 199 // For all pairs of suits 200 for (int s1 = 4; s1--; ) { 201 for (int s2 = s1; s2--; ) { 202 int c1 = 13*s1 + r, 203 c2 = 13*s2 + r; 204 // The ace of spades is already placed 205 if (c1 == 0 || c2 == 0) continue; 206 // Piles are handled by the rules of the game 207 if (pile[c1] == pile[c2]) continue; 208 // Fix the right order of the cards 209 int o1 = c1, o2 = c2; 210 if (pile[c1] > pile[c2] && layer[c2] >= layer[c1]) 211 std::swap(o1, o2); 212 // cond is the condition for the symmetry 213 BoolVarArgs ba; 214 // Both cards played after the ones on top of them 215 for (int i = 0; i < layer[o1]; ++i) 216 ba << expr(*this, (y[layout[pile[o1]][i]] < y[o2])); 217 for (int i = 0; i < layer[o2]; ++i) 218 ba << expr(*this, (y[layout[pile[o2]][i]] < y[o1])); 219 // Both cards played before the ones under them 220 for (int i = layer[o1]+1; i < 3; ++i) 221 ba << expr(*this, (y[o2] < y[layout[pile[o1]][i]])); 222 for (int i = layer[o2]+1; i < 3; ++i) 223 ba << expr(*this, (y[o1] < y[layout[pile[o2]][i]])); 224 // Cond holds when all the above holds 225 BoolVar cond(*this, 0, 1); 226 rel(*this, BOT_AND, ba, cond); 227 228 // If cond is fulfilled, then we can order the cards 229 // cond -> (y[o1] < y[o2]) 230 rel(*this, !cond || (y[o1] < y[o2])); 231 } 232 } 233 } 234 } 235 236 // Install custom brancher 237 branch(*this, x, INT_VAR_NONE(), INT_VAL(&val)); 238 } 239 /// Value selection function for branching 240 static int val(const Space&, IntVar x, int) { 241 int v = -1; 242 int w = 4; 243 for (IntVarValues vals(x); vals(); ++vals) 244 if (layer[vals.val()] < w) { 245 v = vals.val(); 246 if ((w = layer[vals.val()]) == 0) 247 break; 248 } 249 assert(v >= 1 && v < 52); 250 return v; 251 } 252 /// Print instance and solution 253 virtual void 254 print(std::ostream& os) const { 255 os << "Layout:" << std::endl; 256 for (int i = 0; i < 17; i++) { 257 for (int j = 0; j < 3; j++) 258 os << card(layout[i][j]) << " "; 259 if ((i+1) % 3 == 0) 260 os << std::endl; 261 else 262 os << " \t"; 263 } 264 os << std::endl << std::endl; 265 266 os << "Solution:" << std::endl; 267 for (int i = 0; i < 52; ++i) { 268 if (x[i].assigned()) 269 os << card(x[i].val()) << " "; 270 else 271 os << " "; 272 if ((i + 1) % 13 == 0) 273 os << std::endl; 274 } 275 os << std::endl; 276 os << std::endl; 277 } 278 279 /// Constructor for cloning \a s 280 BlackHole(BlackHole& s) : Script(s) { 281 x.update(*this, s.x); 282 y.update(*this, s.y); 283 } 284 /// Copy during cloning 285 virtual Space* 286 copy(void) { 287 return new BlackHole(*this); 288 } 289}; 290 291/** \brief Main-function 292 * \relates BlackHole 293 */ 294int 295main(int argc, char* argv[]) { 296 SizeOptions opt("Black Hole patience"); 297 opt.symmetry(BlackHole::SYMMETRY_CONDITIONAL); 298 opt.symmetry(BlackHole::SYMMETRY_NONE,"none", 299 "no symmetry breaking"); 300 opt.symmetry(BlackHole::SYMMETRY_CONDITIONAL,"conditional", 301 "break conditional symmetries"); 302 opt.propagation(BlackHole::PROPAGATION_TUPLE_SET); 303 opt.propagation(BlackHole::PROPAGATION_REIFIED, 304 "reified", "use reified propagation"); 305 opt.propagation(BlackHole::PROPAGATION_DFA, 306 "dfa", "use DFA-based extensional propagation"); 307 opt.propagation(BlackHole::PROPAGATION_TUPLE_SET, 308 "tuple-set", "use TupleSet-based extensional propagation"); 309 opt.ipl(IPL_DOM); 310 opt.parse(argc,argv); 311 // Generates the new board 312 generate(opt.size()); 313 Script::run<BlackHole,DFS,SizeOptions>(opt); 314 return 0; 315} 316 317// STATISTICS: example-any