this repo has no description
at develop 3.6 kB view raw
1/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */ 2/* 3 * Main authors: 4 * Vincent Barichard <Vincent.Barichard@univ-angers.fr> 5 * 6 * Copyright: 7 * Vincent Barichard, 2012 8 * 9 * This file is part of Gecode, the generic constraint 10 * development environment: 11 * http://www.gecode.org 12 * 13 * Permission is hereby granted, free of charge, to any person obtaining 14 * a copy of this software and associated documentation files (the 15 * "Software"), to deal in the Software without restriction, including 16 * without limitation the rights to use, copy, modify, merge, publish, 17 * distribute, sublicense, and/or sell copies of the Software, and to 18 * permit persons to whom the Software is furnished to do so, subject to 19 * the following conditions: 20 * 21 * The above copyright notice and this permission notice shall be 22 * included in all copies or substantial portions of the Software. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 28 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION 29 * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION 30 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 31 * 32 */ 33 34#include <gecode/driver.hh> 35 36#include <gecode/minimodel.hh> 37#include <gecode/float.hh> 38 39using namespace Gecode; 40 41/** 42 * \brief %Example: Cartesian Heart 43 * 44 * There are many mathematical curves that produce heart shapes. 45 * With a good solving effort, coordinates of a filled heart shape 46 * can be computed by solving the cartesian equation: 47 * 48 * \f[ 49 * x^2+2\left(y-p\times\operatorname{abs}(x)^{\frac{1}{q}}\right)^2 = 1 50 * \f] 51 * 52 * By setting \f$p=0.5\f$ and \f$q=2\f$, it yields to the equation: 53 * 54 * \f[ 55 * x^2+2\left(y-\frac{\operatorname{abs}(x)^{\frac{1}{2}}}{2}\right)^2 = 1 56 * \f] 57 * 58 * To get reasonable interval starting sizes, \f$x\f$ and \f$y\f$ 59 * are restricted to \f$[-20;20]\f$. 60 * 61 * \ingroup Example 62 */ 63class CartesianHeart : public Script { 64protected: 65 /// The numbers 66 FloatVarArray f; 67 /// Minimum distance between two solutions 68 FloatNum step; 69public: 70 /// Actual model 71 CartesianHeart(const Options& opt) 72 : Script(opt), f(*this,2,-20,20), step(opt.step()) { 73 int q = 2; 74 FloatNum p = 0.5; 75 // Post equation 76 rel(*this, sqr(f[0]) + 2*sqr(f[1]-p*nroot(abs(f[0]),q)) == 1); 77 branch(*this, f[0], FLOAT_VAL_SPLIT_MIN()); 78 branch(*this, f[1], FLOAT_VAL_SPLIT_MIN()); 79 } 80 /// Constructor for cloning \a p 81 CartesianHeart(CartesianHeart& p) 82 : Script(p), step(p.step) { 83 f.update(*this, p.f); 84 } 85 /// Copy during cloning 86 virtual Space* copy(void) { 87 return new CartesianHeart(*this); 88 } 89 /// Add constraints to current model to get next solution (not too close) 90 virtual void constrain(const Space& _b) { 91 const CartesianHeart& b = static_cast<const CartesianHeart&>(_b); 92 rel(*this, 93 (f[0] >= (b.f[0].max()+step)) || 94 (f[1] >= (b.f[1].max()+step)) || 95 (f[1] <= (b.f[1].min()-step))); 96 } 97 /// Print solution coordinates 98 virtual void print(std::ostream& os) const { 99 os << "XY " << f[0].med() << " " << f[1].med() 100 << std::endl; 101 } 102 103}; 104 105/** \brief Main-function 106 * \relates CartesianHeart 107 */ 108int main(int argc, char* argv[]) { 109 Options opt("CartesianHeart"); 110 opt.solutions(0); 111 opt.step(0.01); 112 opt.parse(argc,argv); 113 Script::run<CartesianHeart,BAB,Options>(opt); 114 return 0; 115} 116 117// STATISTICS: example-any