this repo has no description
1/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */ 2/* 3 * Main authors: 4 * Mikael Lagerkvist <lagerkvist@gecode.org> 5 * 6 * Copyright: 7 * Mikael Lagerkvist, 2009 8 * 9 * This file is part of Gecode, the generic constraint 10 * development environment: 11 * http://www.gecode.org 12 * 13 * Permission is hereby granted, free of charge, to any person obtaining 14 * a copy of this software and associated documentation files (the 15 * "Software"), to deal in the Software without restriction, including 16 * without limitation the rights to use, copy, modify, merge, publish, 17 * distribute, sublicense, and/or sell copies of the Software, and to 18 * permit persons to whom the Software is furnished to do so, subject to 19 * the following conditions: 20 * 21 * The above copyright notice and this permission notice shall be 22 * included in all copies or substantial portions of the Software. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 28 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION 29 * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION 30 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 31 * 32 */ 33 34#include <gecode/driver.hh> 35#include <gecode/int.hh> 36#include <gecode/minimodel.hh> 37 38using namespace Gecode; 39 40/** 41 * \brief %Options for %EFPA problems 42 * 43 * \relates EFPA 44 */ 45class EFPAOptions : public Options { 46private: 47 Driver::UnsignedIntOption _v; ///< Parameter v 48 Driver::UnsignedIntOption _q; ///< Parameter q 49 Driver::UnsignedIntOption _l; ///< Parameter lambda 50 Driver::UnsignedIntOption _d; ///< Parameter d 51 Driver::StringOption _permutation; ///< Use permutation constraints if d=4 52 53public: 54 /// Initialize options for example with name \a s 55 EFPAOptions(const char* s, 56 int v0 = 5, int q0 = 3, int lambda0 = 2, int d0 = 4) 57 : Options(s), 58 _v("v", "number of sequences", v0 ), 59 _q("q", "number of symbols", q0 ), 60 _l("l", "sets of symbols per sequence (lambda)", lambda0), 61 _d("d", "Hamming distance between sequences", d0 ), 62 _permutation("permutation", "use permutation constraints if d=4", 63 false) 64 { 65 // Add options 66 add(_d); 67 add(_l); 68 add(_q); 69 add(_v); 70 add(_permutation); 71 add(_symmetry); 72 73 // Add permutation options 74 _permutation.add(true, "full" ); 75 _permutation.add(false, "none"); 76 // Add symmetry options 77 _symmetry.add(true, "true" ); 78 _symmetry.add(false, "false"); 79 } 80 /// Parse options from arguments \a argv (number is \a argc) 81 void parse(int& argc, char* argv[]) { 82 Options::parse(argc,argv); 83 } 84 /// Get v, number of sequences 85 int v(void) const { return _v.value(); } 86 /// Get q, number of symbols 87 int q(void) const { return _q.value(); } 88 /// Get lambda, sets of symbols per sequence 89 int l(void) const { return _l.value(); } 90 /// Get d, Hamming distance between sequences 91 int d(void) const { return _d.value(); } 92 93 /// Whether to use permutation constraints. Only active if d=4 94 bool permutation(void) const { return d() == 4 && _permutation.value(); } 95 /// Whether to use symmetry breaking. 96 bool symmetry(void) const { return _symmetry.value(); } 97}; 98 99 100/** 101 * \brief %Example: Equidistant Frequency Permutation Arrays 102 * 103 * This example solves instances of the equidistant frequency 104 * permutation arrays problem. 105 * 106 * The model of the problem is mostly taken from "Modelling 107 * Equidistant Frequency Permutation Arrays in Constraints", by Ian 108 * P. Gent, Paul McKay, Peter Nightingale, and Sophie Huczynska. It 109 * implements the non-Boolean model without SAC. 110 * 111 * \ingroup Example 112 * 113 */ 114class EFPA : public Script { 115protected: 116 int v; ///< Number of sequences 117 int q; ///< Number of symbols 118 int l; ///< Number of sets of symbols for a sequence (\f$\lambda\f$) 119 int d; ///< Hamming distance between any pair of sequences 120 int n; ///< Length of sequence (\f$q\cdot\lambda\f$) 121 int nseqpair; ///< Number of sequence pairs (\f$\frac{v(v-1)}{2}\f$) 122 IntVarArray c; ///< Variables for sequences 123 BoolVarArray diff; ///< Differences between sequences 124 125public: 126 /// Actual model 127 EFPA(const EFPAOptions& opt) 128 : Script(opt), 129 v(opt.v()), 130 q(opt.q()), 131 l(opt.l()), 132 d(opt.d()), 133 n(q*l), 134 nseqpair((v*(v-1))/2), 135 c(*this, n*v, 1,q), 136 diff(*this, n*nseqpair, 0, 1) 137 { 138 // Matrix access 139 // q*lambda=n columns, and v rows 140 Matrix<IntVarArray> cm(c, n, v); 141 // q*lambda=n columns, and nseqpair rows 142 Matrix<BoolVarArray> diffm(diff, n, nseqpair); 143 144 // Counting symbols in rows 145 { 146 IntArgs values(q); 147 for (int i = q; i--; ) values[i] = i+1; 148 IntSet cardinality(l, l); 149 for (int i = v; i--; ) 150 count(*this, cm.row(i), cardinality, values, opt.ipl()); 151 } 152 153 // Difference variables 154 { 155 int nseqi = 0; 156 for (int a = 0; a < v; ++a) { 157 for (int b = a+1; b < v; ++b) { 158 for (int i = n; i--; ) { 159 rel(*this, cm(i, a), IRT_NQ, cm(i, b), diffm(i, nseqi)); 160 } 161 ++nseqi; 162 } 163 } 164 assert(nseqi == nseqpair); 165 } 166 167 // Counting the Hamming difference 168 { 169 for (int i = nseqpair; i--; ) { 170 linear(*this, diffm.row(i), IRT_EQ, d); 171 } 172 } 173 174 // Symmetry breaking 175 if (opt.symmetry()) { 176 IntRelType row_less = d==0 ? IRT_EQ : IRT_LE; 177 // order rows 178 for (int r = 0; r<v-1; ++r) { 179 rel(*this, cm.row(r), row_less, cm.row(r+1)); 180 } 181 // order columns 182 for (int c = 0; c<n-1; ++c) { 183 rel(*this, cm.col(c), IRT_LQ, cm.col(c+1)); 184 } 185 // Set first row according to symmetry breaking 186 int color = 1; 187 int ncolor = 0; 188 for (int c = 0; c < n; ++c) { 189 rel(*this, cm(c, 0), IRT_EQ, color); 190 if (++ncolor == l) { 191 ncolor = 0; 192 ++color; 193 } 194 } 195 } 196 197 // Permutation constraints 198 if (opt.permutation()) { 199 const int k[][4] = { // inverse indexing of the permutation 200 {0, 1, 3, 2}, // cform == 0, ((1, 2)(3, 4)) 201 {1, 2, 3, 0}, // cform == 1, ((1, 2, 3, 4)) 202 }; 203 assert(d == 4); 204 // Constraint on each pair of rows 205 for (int r1 = 0; r1 < v; ++r1) { 206 for (int r2 = r1+1; r2 < v; ++r2) { 207 IntVarArgs row1 = cm.row(r1); 208 IntVarArgs row2 = cm.row(r2); 209 // Perm is the 210 IntVarArgs perm(d); 211 for (int i = d; i--; ) perm[i] = IntVar(*this, 0, n-1); 212 // cform is the cycle-form of the permutation 213 IntVar cform(*this, 0, 1); 214 BoolVar cformb = channel(*this, cform); 215 216 /* Permutation mapping*/ 217 // Values from row1... 218 IntVarArgs _p(2*d); 219 for (int i = 2*d; i--; ) _p[i] = IntVar(*this, 1, q); 220 Matrix<IntVarArgs> p(_p, d, 2); 221 for (int i = 0; i < 2; ++i) { 222 for (int j = 0; j < d; ++j) { 223 element(*this, row1, perm[k[i][j]], p(j, i)); 224 } 225 } 226 227 // ...into values in row2 228 for (int i = 0; i < d; ++i) { 229 IntVar index(*this, 0, 2*d); 230 rel(*this, cform*d + i == index); 231 IntVar value(*this, 1, q); 232 element(*this, _p, index, value); 233 element(*this, row2, perm[i], value); 234 } 235 236 /* Rows r1 and r2 are equal at indices not in perm */ 237 // uses Boolean representations pib for perm[i] 238 BoolVarArgs p1b(*this, n, 0, 1); 239 channel(*this, p1b, perm[0]); 240 BoolVarArgs p2b(*this, n, 0, 1); 241 channel(*this, p2b, perm[1]); 242 BoolVarArgs p3b(*this, n, 0, 1); 243 channel(*this, p3b, perm[2]); 244 BoolVarArgs p4b(*this, n, 0, 1); 245 channel(*this, p4b, perm[3]); 246 for (int i = n; i--; ) { 247 // No perm-variable uses i is equivalent to the reows 248 // being equal at i 249 rel(*this, (!p1b[i] && !p2b[i] && !p3b[i] && !p4b[i]) == 250 (row1[i] == row2[i])); 251 } 252 253 /* Constraints for fixing the permutation */ 254 // Common non-equality constraints - derangements 255 rel(*this, perm[0], IRT_NQ, perm[1]); 256 rel(*this, perm[2], IRT_NQ, perm[3]); 257 // Conditional non-equality constraints - derangment of cform 1 258 // Implements distinct(*this, perm, cformb); 259 rel(*this, perm[0], IRT_NQ, perm[2], cformb); 260 rel(*this, perm[0], IRT_NQ, perm[3], cformb); 261 rel(*this, perm[1], IRT_NQ, perm[2], cformb); 262 rel(*this, perm[1], IRT_NQ, perm[3], cformb); 263 // Common ordering-constraints - symmetry breaking 264 rel(*this, perm[0], IRT_LE, perm[1]); 265 rel(*this, perm[0], IRT_LE, perm[2]); 266 rel(*this, perm[0], IRT_LE, perm[3]); 267 // Conditional ordering constraint - symmetry breaking for cform 0 268 rel(*this, (!cformb) >> (perm[2] < perm[3])); 269 } 270 } 271 } 272 273 branch(*this, c, INT_VAR_NONE(), INT_VAL_MIN()); 274 } 275 276 /// Print instance and solution 277 virtual void 278 print(std::ostream& os) const { 279 Matrix<IntVarArray> cm(c, n, v); 280 for (int i = 0; i < v; ++i) { 281 IntVarArgs r = cm.row(i); 282 os << r << std::endl; 283 } 284 os << std::endl; 285 } 286 287 /// Constructor for cloning \a s 288 EFPA(EFPA& s) 289 : Script(s), 290 v(s.v), 291 q(s.q), 292 l(s.l), 293 d(s.d), 294 n(s.n), 295 nseqpair(s.nseqpair) 296 { 297 c.update(*this, s.c); 298 diff.update(*this, s.diff); 299 } 300 /// Copy during cloning 301 virtual Space* 302 copy(void) { 303 return new EFPA(*this); 304 } 305}; 306 307/** \brief Main-function 308 * \relates EFPA 309 */ 310int 311main(int argc, char* argv[]) { 312 EFPAOptions opt("Equidistant Frequency Permutation Arrays"); 313 opt.ipl(IPL_DOM); 314 opt.parse(argc,argv); 315 316 Script::run<EFPA,DFS,EFPAOptions>(opt); 317 return 0; 318} 319 320// STATISTICS: example-any