this repo has no description
at develop 3.7 kB view raw
1/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */ 2/* 3 * Main authors: 4 * Vincent Barichard <Vincent.Barichard@univ-angers.fr> 5 * 6 * Copyright: 7 * Vincent Barichard, 2012 8 * 9 * This file is part of Gecode, the generic constraint 10 * development environment: 11 * http://www.gecode.org 12 * 13 * Permission is hereby granted, free of charge, to any person obtaining 14 * a copy of this software and associated documentation files (the 15 * "Software"), to deal in the Software without restriction, including 16 * without limitation the rights to use, copy, modify, merge, publish, 17 * distribute, sublicense, and/or sell copies of the Software, and to 18 * permit persons to whom the Software is furnished to do so, subject to 19 * the following conditions: 20 * 21 * The above copyright notice and this permission notice shall be 22 * included in all copies or substantial portions of the Software. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 28 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION 29 * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION 30 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 31 * 32 */ 33 34#include <gecode/driver.hh> 35 36#include <gecode/minimodel.hh> 37#include <gecode/float.hh> 38 39using namespace Gecode; 40 41/** 42 * \brief %Example: Golden spiral 43 * 44 * The Golden Spiral is a logarithmic spiral whose growth factor 45 * is the golden ratio \f$\phi=1,618\f$. 46 * 47 * It is defined by the polar equation: 48 * \f[ 49 * r = ae^{b\theta} 50 * \f] 51 * where 52 * \f[ 53 * \operatorname{abs}(b) = \frac{\operatorname{ln}(\phi)}{\frac{\pi}{2}} 54 * \f] 55 * 56 * To get cartesian coordinates, it can be solved for \f$x\f$ 57 * and \f$y\f$ in terms of \f$r\f$ and \f$\theta\f$. 58 * By setting \f$a=1\f$, it yields to the equation: 59 * 60 * \f[ 61 * r = e^{0.30649\times\theta} 62 * \f] 63 * with 64 * \f[ 65 * x=r\operatorname{cos}(\theta), \quad y=r\operatorname{sin}(\theta) 66 * \f] 67 * 68 * The tuple \f$(r,\theta)\f$ is related to the position for 69 * \f$x\f$ and \f$y\f$ on the curve. \f$r\f$ and \f$\theta\f$ 70 * are positive numbers. 71 * 72 * To get reasonable interval starting sizes, \f$x\f$ and \f$y\f$ 73 * are restricted to \f$[-20;20]\f$. 74 * 75 * \ingroup Example 76 */ 77class GoldenSpiral : public FloatMaximizeScript { 78protected: 79 /// The numbers 80 FloatVarArray f; 81public: 82 /// Actual model 83 GoldenSpiral(const Options& opt) 84 : FloatMaximizeScript(opt), f(*this,4,-20,20) { 85 // Post equation 86 FloatVar theta = f[0]; 87 FloatVar r = f[3]; 88 FloatVar x = f[1]; 89 FloatVar y = f[2]; 90 rel(*this, theta >= 0); 91 rel(*this, r >= 0); 92 rel(*this, r*cos(theta) == x); 93 rel(*this, r*sin(theta) == y); 94 rel(*this, exp(0.30649*theta) == r); 95 96 branch(*this,theta,FLOAT_VAL_SPLIT_MIN()); 97 } 98 /// Constructor for cloning \a p 99 GoldenSpiral(GoldenSpiral& p) 100 : FloatMaximizeScript(p) { 101 f.update(*this, p.f); 102 } 103 /// Copy during cloning 104 virtual Space* copy(void) { 105 return new GoldenSpiral(*this); 106 } 107 /// Cost function 108 virtual FloatVar cost(void) const { 109 return f[0]; 110 } 111 /// Print solution coordinates 112 virtual void print(std::ostream& os) const { 113 os << "XY " << f[1].med() << " " << f[2].med() 114 << std::endl; 115 } 116 117}; 118 119/** \brief Main-function 120 * \relates GoldenSpiral 121 */ 122int main(int argc, char* argv[]) { 123 Options opt("GoldenSpiral"); 124 opt.solutions(0); 125 opt.step(0.1); 126 opt.parse(argc,argv); 127 FloatMaximizeScript::run<GoldenSpiral,BAB,Options>(opt); 128 return 0; 129} 130 131// STATISTICS: example-any