this repo has no description
at develop 2.3 kB view raw
1predicate fzn_lex_lesseq_bool_reif(array[int] of var bool: x, 2 array[int] of var bool: y, 3 var bool: c) = 4 let { int: lx = min(index_set(x)), 5 int: ux = max(index_set(x)), 6 int: ly = min(index_set(y)), 7 int: uy = max(index_set(y)), 8 int: size = max(ux - lx, uy - ly), 9 array[0..size+1] of var bool: b } 10 % b[i] is true if the lexicographical order holds from position i on. 11 in 12 (c <-> b[0]) 13 /\ 14 forall(i in 0..size) ( 15 ( b[i] -> ( x[lx + i] <= y[ly + i] ) ) /\ 16 bool2int(b[i]) + bool2int(x[lx + i]) + (1-bool2int(y[ly + i])) <= 2 17 /\ 18 ( b[i] -> ( x[lx + i] < y[ly + i] \/ b[i+1] ) ) /\ 19 bool2int(b[i]) + (1-bool2int(x[lx + i])) + (1-bool2int(y[ly + i])) + (1-bool2int(b[i+1])) <= 3 20 /\ bool2int(b[i]) + bool2int(x[lx + i]) + bool2int(y[ly + i]) + (1-bool2int(b[i+1])) <= 3 21 /\ bool2int(b[i]) + bool2int(x[lx + i]) + (1-bool2int(y[ly + i])) + (1-bool2int(b[i+1])) <= 3 22 ) 23 /\ b[size+1] = (ux-lx <= uy-ly) 24% endif 25; 26 27predicate fzn_lex_lesseq_bool_imp(array[int] of var bool: x, 28 array[int] of var bool: y, 29 var bool: c) = 30 let { int: lx = min(index_set(x)), 31 int: ux = max(index_set(x)), 32 int: ly = min(index_set(y)), 33 int: uy = max(index_set(y)), 34 int: size = max(ux - lx, uy - ly), 35 array[0..size+1] of var bool: b } 36 % b[i] is true if the lexicographical order holds from position i on. 37 in 38 (c -> b[0]) 39 /\ 40 forall(i in 0..size) ( 41 ( b[i] -> ( x[lx + i] <= y[ly + i] ) ) /\ 42 bool2int(b[i]) + bool2int(x[lx + i]) + (1-bool2int(y[ly + i])) <= 2 43 /\ 44 ( b[i] -> ( x[lx + i] < y[ly + i] \/ b[i+1] ) ) /\ 45 bool2int(b[i]) + (1-bool2int(x[lx + i])) + (1-bool2int(y[ly + i])) + (1-bool2int(b[i+1])) <= 3 46 /\ bool2int(b[i]) + bool2int(x[lx + i]) + bool2int(y[ly + i]) + (1-bool2int(b[i+1])) <= 3 47 /\ bool2int(b[i]) + bool2int(x[lx + i]) + (1-bool2int(y[ly + i])) + (1-bool2int(b[i+1])) <= 3 48 ) 49 /\ b[size+1] = (ux-lx <= uy-ly) 50;