this repo has no description
1predicate fzn_mdd_reif(array[int] of var int: x, % variables constrained by MDD
2 int: N, % number of nodes root is node 1
3 array[int] of int: level, % level of each node root is level 1, T is level length(x)+1
4 int: E, % number of edges
5 array[int] of int: from, % edge leaving node 1..N
6 array[int] of set of int: label, % value of variable
7 array[int] of int: to, % edge entering node 0..N where 0 = T node
8 var bool: b % reification value
9 ) =
10 let { set of int: NODE = 1..N;
11 set of int: EDGE = 1..E;
12 int: L = length(x);
13 array[0..N] of var bool: bn;
14 array[EDGE] of var bool: be;
15 set of int: D = dom_array(x); } in
16 bn[0] /\ % true node is true
17 (b <-> bn[1]) /\ % root gives truth value
18 % T1 each node except the root enforces an outgoing edge
19 forall(n in NODE)(bn[n] -> exists(e in EDGE where from[e] = n)(be[e])) /\
20 % T23 each edge enforces its endpoints
21 forall(e in EDGE)((be[e] -> bn[from[e]]) /\ (be[e] -> bn[to[e]])) /\
22 % T4 each edge enforces its label
23 forall(e in EDGE)(be[e] -> x[level[from[e]]] in label[e]) /\
24 % P1 each node enforces its outgoing edges
25 forall(e in EDGE)(bn[from[e]] /\ x[level[from[e]]] in label[e] -> be[e]) /\
26 % P2 each node except the root enforces an incoming edge
27 exists(e in EDGE where to[e] = 0)(be[e]) /\
28 forall(n in 2..N)(bn[n] -> exists(e in EDGE where to[e] = n)(be[e])) /\
29 % P3 each label has a support
30 forall(i in 1..L, d in D)
31 (x[i] = d -> exists(e in EDGE where level[from[e]] = i /\ d in label[e])(be[e]));