this repo has no description
1<!-- vim:set ft=markdown: --> 2 3<!-- livebook:{"persist_outputs":true} --> 4 5# Day 17 6 7## Setup 8 9```elixir 10input = File.read!("day17.txt") 11# input = "target area: x=117..7310, y=-9546..-89" 12 13IO.puts(input) 14 15%{"a_x" => a_x, "a_y" => a_y, "b_x" => b_x, "b_y" => b_y} = 16 Regex.named_captures( 17 ~r/target area: x=(?<a_x>-?\d+)\.\.(?<b_x>-?\d+), y=(?<a_y>-?\d+)\.\.(?<b_y>-?\d+)/, 18 input 19 ) 20 21a = %{x: String.to_integer(a_x), y: String.to_integer(a_y)} 22b = %{x: String.to_integer(b_x), y: String.to_integer(b_y)} 23 24[a: a, b: b] 25``` 26 27```output 28target area: x=288..330, y=-96..-50 29``` 30 31```output 32[a: %{x: 288, y: -96}, b: %{x: 330, y: -50}] 33``` 34 35## Task 1 36 37### Lemma 1 38 39The horizontal velocity there can be ignored, as we can always find a horizontal velocity 40that will reach the target area and will reduce the velocity to $$0$$, which mean that all 41further movement will happen only in one dimension. That velocity is: 42 43$$ 44v_x = \lceil \frac{-1 + \sqrt{1 + 8b_x}}{2} \rceil 45$$ 46 47#### Proof: 48 49Which came from the fact that distance traveled by the projectile is sum of the arithmetic 50sequence with $$r = -1$$, so the distance traveled is: 51 52$$ 53s_x = \frac{2v_{x0} - t + 1}{2}t 54$$ 55 56Where $$t$$ is travel time. As $$v_x(t) = v_{x0}$$ then $$v_x(t) = 0 \implies t = v_{x0}$$, 57so after substituting $$t$$ we get: 58 59$$ 60s_x = \frac{2v_{x0} - v_{x0} + 1}{2}v_{x0} \\ 61s_x = \frac{v_{x0} + 1}{2}v_{x0} \\ 62s_x = \frac{v_{x0}^2 + v_{x0}}{2} 63$$ 64 65As we want to find the nearest column where we want to stop movement in $$OX$$ then 66we are looking at $$s_x = b_x$$: 67 68$$ 69b_x = \frac{v_{x0}^2 + v_{x0}}{2} \\ 702b_x = v_{x0}^2 + v_{x0} \\ 710 = v_{x0}^2 + v_{x0} - 2b_x 72$$ 73 74The soultions for these equation are in form of: 75 76$$ 77v_{x0} = \frac{-1 \mp \sqrt{1 + 8b_x}}{2} 78$$ 79 80As we assume that $$b_x \gt 0$$, then the solutions will always be trivial. Additionally 81we do not care about negative roots, so we can take only: 82 83$$ 84v_{x0} = \frac{-1 + \sqrt{1 + 8b_x}}{2} 85$$ 86 87As this can be fractional and we want $$v_x0 \in \mathbb{Z}$$ and assume that target is 88big enough to have at least one point that we can land on, then we can simply round velocity 89up: 90 91$$ 92v_x = \lceil \frac{-1 + \sqrt{1 + 8b_x}}{2} \rceil\\ 93$$ 94 95$$\blacksquare$$ 96 97### Lemma 2 98 99TODO 100 101As 102 103$$ 104v_{y0} = \frac{2a_y - t + t^2}{2t} 105$$ 106 107Left to prove that $$v_0$$ will have highest possible value for $$t = -2a_y$$. 108Then above equation reduces like that: 109 110$$ 111v_{y0} = \frac{2a_y + 2a_y + 4a_y^2}{4a_y} \\ 112v_{y0} = \frac{4a_y + 4a_y^2}{4a_y} \\ 113v_{y0} = 1 + a_y 114$$ 115 116```elixir 117v_y = -min(a.y, b.y) - 1 118 119{v_y, v_y * (v_y + 1) / 2} 120``` 121 122```output 123{95, 4560.0} 124``` 125 126## Task 2 127 128```elixir 129solveq_pos = fn a, b, c -> 130 [ 131 (-b - :math.sqrt(b * b - 4 * a * c)) / (2 * a), 132 (-b + :math.sqrt(b * b - 4 * a * c)) / (2 * a) 133 ] 134 |> Enum.filter(&(&1 > 0)) 135end 136 137v_xmin_rest = ceil(hd(solveq_pos.(1, 1, -2 * min(a.x, b.x)))) 138v_xmax_rest = floor(hd(solveq_pos.(1, 1, -2 * max(a.x, b.x)))) 139 140v_ymax = -min(a.y, b.y) - 1 141v_ymin = min(a.y, b.y) 142 143{xmin, xmax} = Enum.min_max([a.x, b.x]) 144{ymin, ymax} = Enum.min_max([a.y, b.y]) 145 146offset = fn 147 0 -> {1, -1} 148 v_y when v_y > 0 -> {2 * v_y + 1, -v_y - 1} 149 v_y -> {0, v_y} 150end 151 152v_y_pairs = 153 for v_y <- v_ymin..v_ymax, 154 {offset, fv_y} = offset.(v_y), 155 tmin <- solveq_pos.(-1, 2 * fv_y + 1, -2 * ymax), 156 tmax <- solveq_pos.(-1, 2 * fv_y + 1, -2 * ymin), 157 ceil(tmin) <= floor(tmax), 158 t <- ceil(tmin)..floor(tmax), 159 do: {v_y, t + offset} 160 161v_x_pairs = 162 for t <- Enum.uniq(Enum.map(v_y_pairs, &elem(&1, 1))), 163 v_xmin_move = ceil((2 * xmin / t + t - 1) / 2), 164 v_xmax_move = floor((2 * xmax / t + t - 1) / 2), 165 xrange = Enum.filter(v_xmin_move..v_xmax_move, &(&1 >= t)), 166 xrange = 167 if(v_xmin_rest < t, 168 do: Enum.concat(xrange, v_xmin_rest..min(t, v_xmax_rest)), 169 else: xrange 170 ), 171 v_x <- MapSet.new(xrange), 172 do: {t, v_x} 173 174pairs = 175 for {v_y, t} <- v_y_pairs, 176 {^t, v_x} <- v_x_pairs, 177 into: MapSet.new(), 178 do: {v_x, v_y} 179 180MapSet.size(pairs) 181``` 182 183```output 1843344 185```