1{ 2 callPackage, 3 stdenv, 4 fetchzip, 5 lib, 6 libcxx, 7 llvmPackages, 8 config, 9 10 addDriverRunpath, 11 patchelf, 12 fixDarwinDylibNames, 13 14 cudaSupport ? config.cudaSupport, 15}: 16 17let 18 # The binary libtorch distribution statically links the CUDA 19 # toolkit. This means that we do not need to provide CUDA to 20 # this derivation. However, we should ensure on version bumps 21 # that the CUDA toolkit for `passthru.tests` is still 22 # up-to-date. 23 version = "2.5.0"; 24 device = if cudaSupport then "cuda" else "cpu"; 25 srcs = import ./binary-hashes.nix version; 26 unavailable = throw "libtorch is not available for this platform"; 27 libcxx-for-libtorch = if stdenv.hostPlatform.isDarwin then libcxx else (lib.getLib stdenv.cc.cc); 28in 29stdenv.mkDerivation { 30 inherit version; 31 pname = "libtorch"; 32 33 src = fetchzip srcs."${stdenv.hostPlatform.system}-${device}" or unavailable; 34 35 nativeBuildInputs = 36 if stdenv.hostPlatform.isDarwin then 37 [ fixDarwinDylibNames ] 38 else 39 [ patchelf ] ++ lib.optionals cudaSupport [ addDriverRunpath ]; 40 41 dontBuild = true; 42 dontConfigure = true; 43 dontStrip = true; 44 45 installPhase = '' 46 # Copy headers and CMake files. 47 mkdir -p $dev 48 cp -r include $dev 49 cp -r share $dev 50 51 install -Dm755 -t $out/lib lib/*${stdenv.hostPlatform.extensions.sharedLibrary}* 52 53 # We do not care about Java support... 54 rm -f $out/lib/lib*jni* 2> /dev/null || true 55 56 # Fix up library paths for split outputs 57 substituteInPlace $dev/share/cmake/Torch/TorchConfig.cmake \ 58 --replace \''${TORCH_INSTALL_PREFIX}/lib "$out/lib" \ 59 60 substituteInPlace \ 61 $dev/share/cmake/Caffe2/Caffe2Targets-release.cmake \ 62 --replace \''${_IMPORT_PREFIX}/lib "$out/lib" \ 63 ''; 64 65 postFixup = 66 let 67 rpath = lib.makeLibraryPath [ stdenv.cc.cc ]; 68 in 69 lib.optionalString stdenv.hostPlatform.isLinux '' 70 find $out/lib -type f \( -name '*.so' -or -name '*.so.*' \) | while read lib; do 71 echo "setting rpath for $lib..." 72 patchelf --set-rpath "${rpath}:$out/lib" "$lib" 73 ${lib.optionalString cudaSupport '' 74 addDriverRunpath "$lib" 75 ''} 76 done 77 '' 78 + lib.optionalString stdenv.hostPlatform.isDarwin '' 79 for f in $out/lib/*.dylib; do 80 otool -L $f 81 done 82 for f in $out/lib/*.dylib; do 83 if otool -L $f | grep "@rpath/libomp.dylib" >& /dev/null; then 84 install_name_tool -change "@rpath/libomp.dylib" ${llvmPackages.openmp}/lib/libomp.dylib $f 85 fi 86 install_name_tool -id $out/lib/$(basename $f) $f || true 87 for rpath in $(otool -L $f | grep rpath | awk '{print $1}');do 88 install_name_tool -change $rpath $out/lib/$(basename $rpath) $f 89 done 90 if otool -L $f | grep /usr/lib/libc++ >& /dev/null; then 91 install_name_tool -change /usr/lib/libc++.1.dylib ${libcxx-for-libtorch.outPath}/lib/libc++.1.0.dylib $f 92 fi 93 done 94 for f in $out/lib/*.dylib; do 95 otool -L $f 96 done 97 ''; 98 99 outputs = [ 100 "out" 101 "dev" 102 ]; 103 104 passthru.tests.cmake = callPackage ./test { 105 inherit cudaSupport; 106 }; 107 108 meta = with lib; { 109 description = "C++ API of the PyTorch machine learning framework"; 110 homepage = "https://pytorch.org/"; 111 sourceProvenance = with sourceTypes; [ binaryNativeCode ]; 112 # Includes CUDA and Intel MKL, but redistributions of the binary are not limited. 113 # https://docs.nvidia.com/cuda/eula/index.html 114 # https://www.intel.com/content/www/us/en/developer/articles/license/onemkl-license-faq.html 115 license = licenses.bsd3; 116 maintainers = with maintainers; [ junjihashimoto ]; 117 platforms = [ 118 "aarch64-darwin" 119 "x86_64-linux" 120 ]; 121 }; 122}