at master 1.8 kB view raw
1{ 2 lib, 3 buildPythonPackage, 4 fetchPypi, 5 setuptools, 6 setuptools-scm, 7 altair, 8 fastapi, 9 geopandas, 10 kaleido, 11 llmx, 12 matplotlib, 13 matplotlib-venn, 14 networkx, 15 numpy, 16 pandas, 17 plotly, 18 plotnine, 19 pydantic, 20 python-multipart, 21 scipy, 22 seaborn, 23 statsmodels, 24 typer, 25 uvicorn, 26 wordcloud, 27 peacasso, 28 basemap, 29 basemap-data-hires, 30 geopy, 31}: 32 33buildPythonPackage rec { 34 pname = "lida"; 35 version = "0.0.14"; 36 pyproject = true; 37 38 # No releases or tags are available in https://github.com/microsoft/lida 39 src = fetchPypi { 40 inherit pname version; 41 hash = "sha256-/az6hS8rNPxb8cDiz9SOyUBi/X48r9prJNFUnx1wPHM="; 42 }; 43 44 patches = [ 45 # The upstream places the data path under the py file's own directory. 46 # However, since `/nix/store` is read-only, we patch it to the user's home directory. 47 ./rw_data.patch 48 ]; 49 50 build-system = [ 51 setuptools 52 setuptools-scm 53 ]; 54 55 dependencies = [ 56 altair 57 fastapi 58 geopandas 59 kaleido 60 llmx 61 matplotlib 62 matplotlib-venn 63 networkx 64 numpy 65 pandas 66 plotly 67 plotnine 68 pydantic 69 python-multipart 70 scipy 71 seaborn 72 statsmodels 73 typer 74 uvicorn 75 wordcloud 76 ]; 77 78 optional-dependencies = { 79 infographics = [ 80 peacasso 81 ]; 82 tools = [ 83 basemap 84 basemap-data-hires 85 geopy 86 ]; 87 transformers = [ 88 llmx 89 ]; 90 web = [ 91 fastapi 92 uvicorn 93 ]; 94 }; 95 96 # require network 97 doCheck = false; 98 99 pythonImportsCheck = [ "lida" ]; 100 101 meta = { 102 description = "Automatic Generation of Visualizations and Infographics using Large Language Models"; 103 homepage = "https://github.com/microsoft/lida"; 104 license = lib.licenses.mit; 105 maintainers = with lib.maintainers; [ moraxyc ]; 106 mainProgram = "lida"; 107 }; 108}