at master 1.3 kB view raw
1{ 2 lib, 3 buildPythonPackage, 4 fetchFromGitHub, 5 setuptools, 6 numpy, 7 pmdarima, 8 scikit-learn, 9 scipy, 10 pytestCheckHook, 11}: 12 13buildPythonPackage rec { 14 pname = "tbats"; 15 version = "1.1.3"; 16 pyproject = true; 17 18 src = fetchFromGitHub { 19 owner = "intive-DataScience"; 20 repo = "tbats"; 21 rev = version; 22 hash = "sha256-f6QqDq/ffbnFBZRAT6KQRlqvZZSE+Pff2/o+htVabZI="; 23 }; 24 25 nativeBuildInputs = [ setuptools ]; 26 27 propagatedBuildInputs = [ 28 numpy 29 pmdarima 30 scikit-learn 31 scipy 32 ]; 33 34 nativeCheckInputs = [ pytestCheckHook ]; 35 36 enabledTestPaths = [ 37 # test_R folder is just for comparison of results with R lib 38 # we need only test folder 39 "test/" 40 ]; 41 42 # several tests has same name, so we use --deselect instead of disableTests 43 dilsabledTestPaths = [ 44 # Test execution is too long > 15 min 45 "test/tbats/TBATS_test.py::TestTBATS::test_fit_predict_trigonometric_seasonal" 46 ]; 47 48 pythonImportsCheck = [ "tbats" ]; 49 50 meta = with lib; { 51 description = "BATS and TBATS forecasting methods"; 52 homepage = "https://github.com/intive-DataScience/tbats"; 53 changelog = "https://github.com/intive-DataScience/tbats/releases/tag/${src.rev}"; 54 license = licenses.mit; 55 maintainers = with maintainers; [ mbalatsko ]; 56 }; 57}