1{ 2 lib, 3 stdenv, 4 buildPythonPackage, 5 python, 6 fetchurl, 7 pythonOlder, 8 pythonAtLeast, 9 10 # buildInputs 11 cudaPackages, 12 ffmpeg_6, 13 sox, 14 15 # nativeBuildInputs 16 addDriverRunpath, 17 autoPatchelfHook, 18 19 # dependencies 20 torch-bin, 21}: 22 23buildPythonPackage rec { 24 pname = "torchaudio"; 25 version = "2.8.0"; 26 format = "wheel"; 27 28 src = 29 let 30 pyVerNoDot = lib.replaceStrings [ "." ] [ "" ] python.pythonVersion; 31 unsupported = throw "Unsupported system"; 32 srcs = (import ./binary-hashes.nix version)."${stdenv.system}-${pyVerNoDot}" or unsupported; 33 in 34 fetchurl srcs; 35 36 disabled = (pythonOlder "3.9") || (pythonAtLeast "3.14"); 37 38 buildInputs = [ 39 # We need to patch lib/torio/_torio_ffmpeg6 40 ffmpeg_6.dev 41 sox 42 ] 43 ++ lib.optionals stdenv.hostPlatform.isLinux ( 44 with cudaPackages; 45 [ 46 # $out/${sitePackages}/torchaudio/lib/libtorchaudio*.so wants libcudart.so.11.0 but torch/lib only ships 47 # libcudart.$hash.so.11.0 48 cuda_cudart 49 50 # $out/${sitePackages}/torchaudio/lib/libtorchaudio*.so wants libnvToolsExt.so.2 but torch/lib only ships 51 # libnvToolsExt-$hash.so.1 52 cuda_nvtx 53 ] 54 ); 55 56 nativeBuildInputs = lib.optionals stdenv.hostPlatform.isLinux [ 57 autoPatchelfHook 58 addDriverRunpath 59 ]; 60 61 dependencies = [ torch-bin ]; 62 63 preInstall = lib.optionals stdenv.hostPlatform.isLinux '' 64 addAutoPatchelfSearchPath "${torch-bin}/${python.sitePackages}/torch" 65 ''; 66 67 preFixup = '' 68 # TorchAudio loads the newest FFmpeg that works, so get rid of the 69 # old ones. 70 rm $out/${python.sitePackages}/torio/lib/{lib,_}torio_ffmpeg{4,5}.* 71 ''; 72 73 # The wheel-binary is not stripped to avoid the error of `ImportError: libtorch_cuda_cpp.so: ELF load command address/offset not properly aligned.`. 74 dontStrip = true; 75 76 pythonImportsCheck = [ "torchaudio" ]; 77 78 meta = { 79 description = "PyTorch audio library"; 80 homepage = "https://pytorch.org/"; 81 changelog = "https://github.com/pytorch/audio/releases/tag/v${version}"; 82 # Includes CUDA and Intel MKL, but redistributions of the binary are not limited. 83 # https://docs.nvidia.com/cuda/eula/index.html 84 # https://www.intel.com/content/www/us/en/developer/articles/license/onemkl-license-faq.html 85 license = lib.licenses.bsd3; 86 sourceProvenance = with lib.sourceTypes; [ binaryNativeCode ]; 87 platforms = [ 88 "aarch64-linux" 89 "x86_64-linux" 90 "aarch64-darwin" 91 ]; 92 maintainers = with lib.maintainers; [ 93 GaetanLepage 94 junjihashimoto 95 ]; 96 }; 97}