Show the easy direction

Changed files
+149 -24
+149 -24
lics.tex
···
\usepackage{mathtools}
\usepackage{tikz-cd}
\usepackage[capitalise]{cleveref}
+
\usetikzlibrary{arrows.meta, calc}
\settopmatter{printfolios=true}
+
+
\Crefname{diagram}{Diagram}{Diagrams}
\NewDocumentCommand\OpenMCyl{}{\mathsf{M}^\circ}
\NewDocumentCommand\ClosedMCyl{}{\mathsf{M}^\bullet}
···
\NewDocumentCommand\Lift{}{\mathsf{L}^\circ}
\NewDocumentCommand\CoLift{}{\mathsf{L}^\bullet}
+
\NewDocumentCommand\HornLift{}{\mathsf{L}^{\Lambda}}
+
\NewDocumentCommand\TriLift{}{\mathsf{L}^{\Delta}}
\tikzcdset{
open immersion/.style={
···
\em for any type $X$, the comparison map $X_\bot\to \Lift(X)$ is an equivalence,
\end{quote}
because statements in type theory are automatically invariant under change-of-context.\footnote{Indeed, context invariance is in some sense the entire reason for dependent type theory to exist at all.} Indeed, \citet{pugh-sterling-2025} noted that under this assumption, we could deduce
-
\begin{equation}\label{bad-deduction}
+
\begin{equation}\label[equation]{bad-deduction}
\textstyle\prod_{(i:\mathbb{I})}
\mathsf{isEquiv}\bigl\lparen
(i=1)_\bot
···
In type theoretic terms, we may compute the generic inner horn following \citet{riehl-shulman:2017} as the following subspace of the triangle $\Spx{\Two}$:
\[
-
\Horn :\equiv \{ (i \geq j) : \Spx{\Two} \mid \IsT{i} \lor \IsF{j}\}
+
\Horn :\equiv \{ (i \geq j) : \Spx{\Two} \mid \IsF{j} \lor \IsT{i}\}
\]
From a geometrical point of view, the above amounts to glueing the interval onto itself end-to-end with the images of each copy of the interval forming open and closed subspaces respectively of the horn as follows:
···
We shall refer to these as the logical open/closed mapping cylinders respectively. At times, we may refer to the ordinary mapping cylinders $\OpenMCyl_B(f),\ClosedMCyl_B(f)$ as \emph{geometrical} mapping cylinders.
-
\subsection{The Sierpi\'nski comparison map}\label{sec:sierpinski-comparison-map}
+
\subsection{Comparison maps: geometry to logic}\label{sec:sierpinski-comparison-map}
+
+
\subsubsection{Comparing the Sierpi\'nski cone with the partial map classifier}
We will now describe the comparison maps $\sigma_X\colon X_\bot\to \Lift(X)$ and, dually, $\Flip{\sigma}_X\colon X^\top\to\CoLift(X)$. These comparison maps always exist as soon as $\J$ is consistent, but it will actually streamline subsequent matters slightly if we relax this assumption and instead consider $X$ drawn from the reflective subuniverse of \emph{$\IsF{1}$-connected} types, specified below.
···
Evidently, $\IsT{i}$ is $\IsF{1}$ connected for any $i:\II$.
\end{remark}
-
\begin{lemma}\label{lem:X-01-connected-incl-open}
+
\begin{lemma}\label[lemma]{lem:X-01-connected-incl-open}
When $X$ is $\IsF{1}$-connected, the square
\[
\begin{tikzcd}
···
recalling \cref{lem:X-01-connected-incl-open}
\end{construction}
-
\subsection{For fibre and mapping cylinders}
+
\subsubsection{Comparing geometrical and logical mapping cylinders}
The Sierpi\'nski comparison maps (\S~\ref{sec:sierpinski-comparison-map}) also allow a comparison between the ``geometrical'' and ``logical'' fibre cylinders. In particular, when $x:B\vdash E[x]$ is a family of $\IsF{1}$-connected types, we have the sum of comparison maps
\[
···
\section{Local subuniverses of spaces}
-
\subsection{Preliminary definitions}
+
\subsection{Segal completeness}
-
\subsubsection{Segal completeness}
-
-
From \citet{riehl-shulman:2017} we recall that a type $C$ is called \emph{Segal complete} when it is internally right orthogonal to the comparison map $\Horn\hookrightarrow\Spx{\Two}$. To be precise, this means that the restriction map
+
From \citet{riehl-shulman:2017} we recall that a type $C$ is called \emph{Segal complete} when it is right orthogonal to the comparison map $\Horn\hookrightarrow\Spx{\Two}$. To be precise, this means that the restriction map
\[
(\Spx{\Two}\to C) \to (\Horn\to C)
\]
is an equivalence. The Segal complete types form an \emph{accessible} reflective subuniverse---because the localising class $\mathcal{L}_{\textit{Segal}} \equiv \{\Horn\hookrightarrow\Spx{\Two}\}$ is very small indeed.
-
\subsubsection{Upper and lower Segal completeness}
+
\subsection{Upper and lower Segal completeness}
% \subsubsection{Slices and co-slices of the interval}
···
\end{tikzcd}
\]
-
\begin{proposition}[{\citet{pugh-sterling-2025}}]\label{prop:lift-as-slice}
+
\begin{proposition}[{\citet{pugh-sterling-2025}}]\label[proposition]{prop:lift-as-slice}
When $\J$ is conservative, the inclusion $\II/i\hookrightarrow \Lift\IsT{i}$ is an equivalence.
\end{proposition}
-
\begin{corollary}\label{cor:colift-as-coslice}
+
\begin{corollary}\label[corollary]{cor:colift-as-coslice}
Dually when $\J\Op$ is conservative, the comparison map $i/\II\to\CoLift\IsF{i}$ is an equivalence. Hence, when $\J$ is stably quasi-coherent, both comparison maps are equivalences.
\end{corollary}
···
(Evidently, a type is upper Segal complete with respect to $\J$ if and only if it is lower Segal complete with respect to the dual lattice $\J\Op$.)
-
\subsubsection{Sierpi\'nski completeness}
+
\subsection{Sierpi\'nski completeness}
We shall slightly adapt the definition of \emph{Sierpi\'nski completeness} from \citet{pugh-sterling-2025} to avoid relying on global assumptions.
\begin{definition}
-
A type $C$ is called \emph{Sierpi\'nski complete} when it is internally right orthogonal to the comparison map
+
A type $C$ is called \emph{Sierpi\'nski complete} when it is right orthogonal to the comparison map
\[ \sigma_X\colon X_\bot \to \Lift(X) \]
for generic $\IsF{1}$-connected $X$.\footnote{Compare with \citet{pugh-sterling-2025}, who gave the definition of Sierpi\'nski completeness only under the global assumption that the $\J$ is non-trivial, so that \emph{every} $X$ is $\IsF{1}$-connected.}
\end{definition}
-
Dually, we may define a type to be \emph{inverted Sierpi\'nski complete} when it is internally right orthogonal to
+
Dually, we may define a type to be \emph{inverted Sierpi\'nski complete} when it is right orthogonal to
\Flip{\sigma}_X\colon X^\top \to \CoLift(X)
for generic $\IsT{0}$-connected $X$. Evidently a type is Sierpi\'nski complete with respect to $\J$ if and only if it is inverted Sierpi\'nski complete with respect to $\J\Op$.
-
\subsection{Comparing orthogonality laws}
+
\section{Comparison results for local subuniverses}
\begin{proposition}[{\citet{pugh-sterling-2025}}]
When $\J$ is conservative, a type $C$ is upper Segal complete if and only if it is orthogonal to the little comparison map $\sigma_{\IsT{i}}\colon \IsT{i}_\bot\hookrightarrow \Lift\IsT{i}$ for generic $i:\II$.
···
\end{corollary}
-
\begin{theorem}\label{thm:sierpinski-completeness-mapping-cylinders}
+
\begin{theorem}\label[theorem]{thm:sierpinski-completeness-mapping-cylinders}
The following are equivalent for a type $C$:
\begin{enumerate}
\item The type $C$ is Sierpi\'nski complete.
-
\item The type $C$ is internally right orthogonal to the comparison map
+
\item The type $C$ is right orthogonal to the comparison map
\[ \OpenMCyl_{(x:B)}E[x]\to \Lift_{(x:B)}E[x]\] from the geometrical to the logical open fibre cylinder for each family of $\IsF{1}$-connected types $x:B\vdash E[x]$.
-
\item The type $C$ is internally right orthogonal to the comparison map \[ \OpenMCyl_B(f)\to \Lift_B(f)\] for each $\IsF{1}$-connected function $f\colon E\to B$.
+
\item The type $C$ is right orthogonal to the comparison map \[ \OpenMCyl_B(f)\to \Lift_B(f)\] for each $\IsF{1}$-connected function $f\colon E\to B$.
\end{enumerate}
\end{theorem}
···
The thrust of \cref{thm:sierpinski-completeness-mapping-cylinders} is to say that in any subuniverse in which partial map classifiers exist and satisfy the universal property of the Sierpi\'nski cone, it \emph{also} follows that logical mapping cylinders (if they exist) must satisfy the universal property of (geometrical) mapping cylinders. Of course, a dual result relating inverted Sierpi\'nski completeness to the \emph{closed} fibre/mapping cylinders follows by considering \cref{thm:sierpinski-completeness-mapping-cylinders} with respect to $\J\Op$.
-
\subsubsection{From upper Segal to Sierpi\'nski completeness}
-
+
\subsection{Upper Segal implies Sierpi\'nski}
We now complete the analysis of Sierpi\'nski completeness initiated by \citet{pugh-sterling-2025}.
-
\begin{theorem}
+
\begin{theorem}\label[theorem]{thm:upper-segal-implies-sierpinski}
Any upper Segal complete type is Sierpi\'nski complete.
\end{theorem}
-
\textcolor{red}{TODO}
+
+
\citet{pugh-sterling-2025} proved a restricted variant of \cref{thm:upper-segal-implies-sierpinski} that applies only to sets, \emph{i.e.}\ $0$-truncated types. This restriction was prohibitive to the study of \emph{higher} domains or \emph{higher} categories, seeing as a synthetic $(\infty,1)$-category is $0$-truncated if and only if it is a partial order. Our contribution is a proof strategy that does not resort to truncation.
+
+
We will divide the proof of \cref{thm:upper-segal-implies-sierpinski} into two parts, showing separately that for an upper Segal complete type $C$, each restriction map \[ C^{\sigma_X} \colon (\Lift(X)\to C) \to (X_\bot\to C) \] for $\IsF{1}$-connected $X$ is a section and a retraction. In fact, the retraction property of $C^{\sigma_X}$ was verified unconditionally by \citet{pugh-sterling-2025}, but we have a more conceptual proof that we will show. On the other hand, the section property of $C^{\sigma_X}$ without side conditions is entirely new.
+
+
\begin{proposition}[{\citet{pugh-sterling-2025}}]\label[proposition]{prop:horn-tri-as-sums}
+
The generic inner horn $\Horn \equiv \{ (i,j) \mid \IsF{j} \lor \IsT{i}\}$ is the sum $\textstyle\sum_{(i:\II)} \IsT{i}_\bot
+
$ of all the little Sierpi\'nski cones $\IsT{i}_\bot$. Similarly the triangle $\Spx{\Two} \equiv \{(i,j) \mid i \geq j\}$ is the sum $\sum_{(i:\II)}\II/i$ of all the slices $\II/i$ of the interval.
+
\end{proposition}
+
+
\begin{construction}
+
We consider the following open subspaces of the inner horn and the triangle respectively:
+
\[
+
\begin{tikzcd}
+
\{(1\geq i)\mid i:\II\} \ar[r] \ar[d,open immersion] & \{(1\geq i)\mid i:\II\}\ar[r]\ar[d,open immersion] & \{1\} \ar[d,open immersion]
+
\\
+
\Horn \ar[r,hookrightarrow] & \Spx{\Two} \ar[r, "\max"'] & \II
+
\end{tikzcd}
+
\]
+
+
The open immersions above determine partial products
+
\begin{align*}
+
\HornLift(X) &:\equiv
+
\textstyle
+
\sum_{(\alpha:\Horn)}
+
X^{\IsT{\max \alpha}}
+
\\
+
\TriLift(X) &:\equiv
+
\textstyle
+
\sum_{(\alpha:\Spx{\Two})}
+
X^{\IsT{\max \alpha}}
+
\end{align*}
+
and there is an evident inclusion
+
\[
+
\HornLift(X)\hookrightarrow \TriLift(X)
+
\]
+
induced by the inclusion $\Horn\hookrightarrow\Spx{\Two}$.
+
\end{construction}
+
+
\begin{construction}\label[construction]{con:evaluation-maps}
+
For a partial element $x\colon \IsT{i}\to X$, we consider the following little square induced (wild) naturality of $\sigma_{(-)}\colon (-)_\bot\to \Lift$.
+
\[
+
\begin{tikzcd}[cramped]
+
\IsT{i}_\bot \ar[r,equals] \ar[d,hookrightarrow] & \IsT{i}_\bot\ar[r,"x_\bot"] \ar[d, hookrightarrow, "\sigma_{\IsT{i}}"description] & X_\bot\ar[d, "\sigma_X"]\\
+
\II/i \ar[r,hookrightarrow] & \Lift\IsT{i} \ar[r,"\Lift(x)"'] & \Lift(X)
+
\end{tikzcd}
+
\]
+
+
Recalling the universal properties of $\Horn$ and $\Spx{\Two}$ \emph{qua} sums via \cref{prop:horn-tri-as-sums} and the definitions of $\HornLift$ and $\TriLift$ as sums, the little squares above may be glued together to form a single square consisting of horizontal ``evaluation maps'':
+
\[
+
\begin{tikzcd}
+
\HornLift(X) \ar[d,hookrightarrow] \ar[r,densely dashed,"\epsilon_X^{\Lambda}"] & X_\bot\ar[d, "\sigma_X"]
+
\\
+
\TriLift(X)\ar[r,densely dashed,"\epsilon_X^\Delta"'] & \Lift(X)
+
\end{tikzcd}
+
\]
+
\end{construction}
+
+
\begin{lemma}\label[lemma]{con:tau}
+
The evaluation map \[ \epsilon_X^\Delta \colon \TriLift(X)\to \Lift(X)\] has a section $\tau_X\colon \Lift(X)\to \TriLift(X)$ induced by the diagonal function $\delta\colon \II\hookrightarrow\Spx{\Two}$ sending $i:\II$ to the generic element $(i\geq i)\in\Spx{\Two}$. In particular, we define
+
$
+
\tau_X(i,x) :\equiv (\delta i, x)
+
$
+
\end{lemma}
+
+
Note that the other evaluation map $\epsilon^\Lambda_X\colon \HornLift(X)\to X_\bot$ will \emph{not} generally have a section.
-
\section{Closure of local subuniverses under logical mapping cylinders}
+
\begin{lemma}\label[lemma]{lem:segal-complete-right-orth-hornlift-trilift}
+
Any upper Segal complete type is right orthogonal to the inclusion $\HornLift(X)\hookrightarrow\TriLift(X)$ for generic $X$.
+
\end{lemma}
+
\begin{proof}
+
Let $C$ be upper Segal complete. We have the following commuting square, in which we aim to show that the left-hand map is an equivalence:
+
\[
+
\begin{tikzcd}
+
{[\TriLift(X), C]}\ar[d]\ar[r, "\cong"] & {\prod_{(i:\II, x:X^{\IsT{i}})}\bigl[\IsT{i}_\bot, C\bigr] }\ar[d,"\cong"]
+
\\
+
{[\HornLift(X),C]}\ar[r,"\cong"]& {\prod_{(i:\II, x:X^{\IsT{i}})}[\II/i, C]}
+
\end{tikzcd}
+
\]
+
+
The upper and lower maps are the currying/uncurrying equivalences, recalling \cref{prop:horn-tri-as-sums}. The right-hand map is the product of the restriction maps along $\IsT{i}_\bot\hookrightarrow\II/i$, which are equivalences by assumption. By the three-for-two property, the left-hand map is an equivalence too.
+
\end{proof}
+
+
\begin{lemma}
+
Let $C$ be an upper Segal complete type. Then for $\IsF{1}$-connected $X$ the restriction map \[ C^{\sigma_X} \colon (\Lift(X)\to C) \to (X_\bot\to C)\] has a retraction.
+
\end{lemma}
+
+
\begin{proof}
+
We consider the following diagram summarising \cref{con:evaluation-maps,con:tau}:
+
% Moreover, we have the following commuting square:
+
\[
+
\begin{tikzcd}
+
& \HornLift(X) \ar[d,hookrightarrow] \ar[r, "\epsilon_X^{\Lambda}"] & X_\bot\ar[d, "\sigma_X"]
+
\\
+
\Lift(X) \ar[r,"\tau_X"] \ar[rr, equals,curve={height=18pt}] & \TriLift(X)\ar[r,"\epsilon_X^\Delta"] & \Lift(X)
+
\end{tikzcd}
+
\]
+
+
Recalling \cref{lem:segal-complete-right-orth-hornlift-trilift}, we obtain the following square by dualising with respect to $C$:
+
\[
+
\begin{tikzcd}[cramped, column sep=large]
+
{[\Lift(X),C]}
+
\ar[rr,equals,curve={height=-18pt}]
+
\ar[r, "{[\epsilon_X^\Delta,C]}"description]
+
\ar[d, "{[\sigma_X,C]}"']
+
&
+
{[\TriLift(X),C]}
+
\ar[r,"{[\tau_X,C]}"description]
+
\ar[d, curve={height=18pt},"\cong"description]
+
&
+
{[\Lift(X),C]}
+
\\
+
{[X_\bot,C]}
+
\ar[r, "{[\epsilon^\Lambda_X,C]}"']
+
&
+
{[\HornLift(X),C]}
+
\ar[u, curve={height=18pt},"\cong"description]
+
\end{tikzcd}
+
\]
+
+
The composite map $[X_\bot,C]\to [\Lift(X),C]$ is immediately seen to be a retraction of $[\sigma_X,C]$.
+
\end{proof}
+
+
\section{Existence of logical mapping cylinders}
\clearpage