+19
-20
lics.tex
+19
-20
lics.tex
···-We will now describe the comparison maps $\sigma_X\colon X_\bot\to \Lift(X)$ and, dually, $\Flip{\sigma}_X\colon X^\top\to\CoLift(X)$. These comparison maps always exist as soon as $\J$ is consistent, but it will actually streamline subsequent matters slightly if we relax this assumption and instead consider $X$ drawn from the reflective subuniverse of \emph{$\IsF{1}$-connected} types, specified below.+We now describe the comparison maps $\sigma_X\colon X_\bot\to \Lift(X)$ and, dually, $\Flip{\sigma}_X\colon X^\top\to\CoLift(X)$. These comparison maps always exist as soon as $\J$ is consistent, but it will actually streamline subsequent matters slightly if we relax this assumption and instead consider $X$ drawn from the reflective subuniverse of \emph{$\IsF{1}$-connected} types, specified below.Let $P$ be a proposition. Then a type $X$ is $P$-connected if and only if either of the following equivalent conditions hold:···From \citet{riehl-shulman:2017} we recall that a type $C$ is called \emph{Segal complete} when it is right orthogonal to the comparison map $\Horn\hookrightarrow\Spx{\Two}$. To be precise, this means that the restriction mapis an equivalence. The Segal complete types form an \emph{accessible} reflective subuniverse---because the localising class $\mathcal{L}_{\textit{Segal}} \equiv \{\Horn\hookrightarrow\Spx{\Two}\}$ is very small indeed.······