Space hacking

Changed files
+19 -20
+19 -20
lics.tex
···
\subsubsection{Comparing the Sierpi\'nski cone with the partial map classifier}
-
We will now describe the comparison maps $\sigma_X\colon X_\bot\to \Lift(X)$ and, dually, $\Flip{\sigma}_X\colon X^\top\to\CoLift(X)$. These comparison maps always exist as soon as $\J$ is consistent, but it will actually streamline subsequent matters slightly if we relax this assumption and instead consider $X$ drawn from the reflective subuniverse of \emph{$\IsF{1}$-connected} types, specified below.
+
We now describe the comparison maps $\sigma_X\colon X_\bot\to \Lift(X)$ and, dually, $\Flip{\sigma}_X\colon X^\top\to\CoLift(X)$. These comparison maps always exist as soon as $\J$ is consistent, but it will actually streamline subsequent matters slightly if we relax this assumption and instead consider $X$ drawn from the reflective subuniverse of \emph{$\IsF{1}$-connected} types, specified below.
\begin{definition}[{\citet{rijke-shulman-spitters:2020}}]
Let $P$ be a proposition. Then a type $X$ is $P$-connected if and only if either of the following equivalent conditions hold:
···
\subsection{Segal completeness}
From \citet{riehl-shulman:2017} we recall that a type $C$ is called \emph{Segal complete} when it is right orthogonal to the comparison map $\Horn\hookrightarrow\Spx{\Two}$. To be precise, this means that the restriction map
-
\[
+
$
(\Spx{\Two}\to C) \to (\Horn\to C)
-
\]
+
$
is an equivalence. The Segal complete types form an \emph{accessible} reflective subuniverse---because the localising class $\mathcal{L}_{\textit{Segal}} \equiv \{\Horn\hookrightarrow\Spx{\Two}\}$ is very small indeed.
···
% \subsubsection{Slices and co-slices of the interval}
-
For $i:\II$, may consider the following finitely presented $\J$-algebras:
-
\begin{align*}
-
\J[\mathsf{x}\leq i] &:\equiv
-
\J[\mathsf{x}]/ (\mathsf{x}\land i =\mathsf{x})
-
\\
-
\J[\mathsf{x}\geq i] &:\equiv
+
For $i:\II$, consider the following finitely presented $\J$-algebras:
+
\[
+
\J[\mathsf{x}\leq i] :\equiv
+
\J[\mathsf{x}]/ (\mathsf{x}\land i =\mathsf{x})\text{,}
+
\quad
+
\J[\mathsf{x}\geq i] :\equiv
\J[\mathsf{x}]/ (\mathsf{x}\land i = i)
-
\end{align*}
+
\]
Applying the \emph{spectrum} functor we obtain corresponding subspaces of the interval:
\begin{align*}
···
% \subsubsection{Little comparison maps}
-
Recalling the definitions of the little Sierpi\'nski cones in either orientation, we have:
+
Recalling the definitions of the little Sierpi\'nski cones in either orientation, we have
-
\begin{align*}
-
\IsT{i}_\bot &\equiv \{ j : \II \mid \IsF{j}\lor \IsT{i}\}
-
\\
-
\IsF{i}^\top &\equiv \{ j : \II\mid \IsT{j}\lor \IsF{i} \}
-
\end{align*}
-
-
We have evident inclusions
+
\[
+
\IsT{i}_\bot \equiv \{ j : \II \mid \IsF{j}\lor \IsT{i}\},
+
\qquad
+
\IsF{i}^\top \equiv \{ j : \II\mid \IsT{j}\lor \IsF{i} \}
+
\]
+
and evident inclusions
\[
-
\IsT{i}_\bot \subseteq \II/i\subseteq \II\qquad
-
\IsF{i}^\top \subseteq i/\II\subseteq \II
+
\IsT{i}_\bot \subseteq \II/i\subseteq \II,\qquad
+
\IsF{i}^\top \subseteq i/\II\subseteq \II\text{.}
\]