Working on sierpinski extension

Changed files
+135 -111
+135 -111
lics.tex
···
\NewDocumentCommand\TriLift{}{\mathsf{L}^{\Delta}}
\tikzcdset{
-
open immersion/.style={
-{Triangle[open]}, hook
},
-
closed immersion/.style={
-{Triangle[fill=black]}, hook
}
}
···
The two-handedness of $\II$ extends to an identification between the \emph{Sierpi\'nski cone} and the \emph{partial map classifier} of any space $\XX$, which we illuminate below. The Sierpi\'nski cone $\XX_\bot$ of a space $\XX$ is the following co-comma square, which we may compute by means of a pushout:
\[
\begin{tikzcd}
-
\XX\ar[r,equals]\ar[d] & \XX \ar[d,open immersion,"\iota_\XX"]\\
-
\One\arrow[r,swap,closed immersion,"\bot_\XX"]\ar[ur,phantom,"{\Uparrow}\gamma_\XX"] & \XX\mathrlap{_\bot}
\end{tikzcd}
\qquad
\begin{tikzcd}
-
\XX\ar[r,closed immersion,"{(0,\XX)}"]\ar[d] & \II\times\XX \ar[d,"\gamma_\XX"description] & \XX\ar[l,open immersion,swap,"{(1,\XX)}"]\ar[dl,sloped,swap,open immersion,"\iota_\XX"] \\
-
\One\ar[r,swap,closed immersion,"\bot_\XX"] & |[pushout]|\XX\mathrlap{_\bot}
\end{tikzcd}
\]
···
The (open) partial map classifier $\eta_\XX\colon \XX\hookrightarrow \Lift(\XX)$ is, on the other hand, the partial product of $\XX$ with the open embedding $\{1\}\hookrightarrow \II$ and classifies spans
\[
\begin{tikzcd}
-
\XX & U\ar[l]\ar[r,open immersion]& \mathbb{Y}
\end{tikzcd}
\]
where $U$ is an \emph{open} subspace of $\mathbb{Y}$, \emph{i.e.}\ a pullback of $\{1\}\hookrightarrow \II$ in the sense that every such span arises in the context of a unique pullback square:
\[
\begin{tikzcd}
-
|[pullback]|U\ar[r]\ar[d,open immersion] & \XX\ar[d,open immersion,"\eta_\XX"]\\
\mathbb{Y}\ar[r,densely dashed,swap,"\exists!"] & \Lift(\XX)
\end{tikzcd}
\]
···
\[
\begin{tikzcd}
-
\XX\ar[r,equals]\ar[d] & \XX \ar[d,open immersion,"\eta_\XX"]\\
-
\One\arrow[r,swap,closed immersion,"\bot_\XX"]\ar[ur,phantom,"{\Uparrow}"] & \Lift(\XX)
\\
-
|[gray, sw muted pullback]|\varnothing \ar[u,gray,open immersion]\ar[r,gray,-{Triangle[fill=gray]}, hook] & |[gray]|\XX \ar[u,swap,gray,open immersion,"\eta_\XX"]
\end{tikzcd}
\qquad
\begin{tikzcd}
-
|[pullback]|\XX\ar[r,equals]\ar[d,open immersion,swap,"\iota_\XX"] & \XX\ar[d,open immersion,"\eta_\XX"]\\
\XX_\bot\ar[r,densely dashed,swap,"\exists!"] & \Lift(\XX)
\end{tikzcd}
\]
···
The Sierpi\'nski cone is a special case of a more general co-comma construction that yields the \emph{Artin glueing} or \emph{closed mapping cylinder} of a function $f\colon X\to Y$:
\[
\begin{tikzcd}
-
X\ar[r,equals]\ar[d,swap,"f"] & X \ar[d,open immersion,"\iota_f"]\\
-
Y\arrow[r,swap,closed immersion,"\bot_f"]\ar[ur,phantom,"{\Uparrow}\gamma_f"] & f \uparrow X
\end{tikzcd}
\]
···
and under this identification, the Artin glueing of $f$ becomes the sum of all the Sierpi\'nski cones of the fibres of $f\colon X\to Y$,
\[
\begin{tikzcd}[column sep=huge]
-
\sum_{(y:Y)}\mathsf{fib}_f(y)\ar[r,equals]\ar[d,swap,"\sum_{(y:Y)}\star"] & \sum_{(y:Y)}\mathsf{fib}_f(y) \ar[d,open immersion,"\sum_{(y:Y)}\iota_{\mathsf{fib}_f(y)}"]\\
-
\sum_{(y:Y)}\mathbf{1}\arrow[r,swap,closed immersion,"\sum_{(y:Y)}\bot_{\mathsf{fib}_f(y)}"]\ar[ur,phantom,"{\Uparrow}\sum_{(y:Y)}\gamma_{\mathsf{fib}_f(y)}"] & \sum_{(y:Y)} (\mathsf{fib}_f(y))_\bot
\end{tikzcd}
\]
keeping in mind that the summing functor \[ \textstyle\sum_{Y}\colon \mathbf{Type}/Y\to \mathbf{Type} \]
···
The Sierpi\'nski cone of a space $X$ is contains $X$ as an \emph{open} subspace above a minimal closed point as depicted below:
\[
\begin{tikzcd}
-
X\ar[r,equals]\ar[d] & X \ar[d,open immersion,"\iota_X"]\\
-
\One\arrow[r,swap,closed immersion,"\bot_X"]\ar[ur,phantom,"{\Uparrow}\gamma_X"] & X\mathrlap{_\bot}
\end{tikzcd}
\]
There is a dual construction $X^\top$ in which we change the orientation of the cylinder so as to obtain $X$ as a \emph{closed} subspace under a maximal open point, \citet{taylor:2000} refers to as \emph{inverted Sierpi\'nski cone}:
\[
\begin{tikzcd}
-
X\ar[r,equals]\ar[d] & X \ar[d,closed immersion,"\Flip{\iota}_X"]\\
-
\One\arrow[r,swap,open immersion,"\top_X"]\ar[ur,phantom,"{\Downarrow}\Flip{\gamma}_X"] & X\mathrlap{^\top}
\end{tikzcd}
\]
···
Each bounded distributive lattice $\J$ generates a ``geometry'' of cubes, simplices, horns, \emph{etc.}\ that are all obtained by glueing together various $\J$-spectrums.
-
\subsubsection{The interval; open and closed immersions}
We will write $\II$ to denote the ``interval'', which we may define to be the underlying set of $\J$ itself. The ``observational topology'' $\Opens{\J}X \equiv \J^X$ of a space $X$ therefore has $\II^X$ as its underlying set/space. The role of the interval in representing the intrinsic topology of a given space leads to a simple description of \emph{open} and \emph{closed} subspaces.
\begin{definition}
-
An embedding $X\hookrightarrow Y$ is called an \emph{open immersion} when it arises as the pullback of the inclusion $\{1\}\hookrightarrow \II$, and a \emph{closed immersion} when it arises as a pullback of the inclusion $\{0\}\hookrightarrow \II$.
\end{definition}
-
The open and closed immersions
\[
\begin{tikzcd}
\{0\}
-
\ar[r,closed immersion]
&
\II
&
-
\ar[l, open immersion]
\{1\}
\end{tikzcd}
\]
···
&
|[pullback]|U
\ar[l]
-
\ar[d, open immersion]
\ar[r]
&
\{1\}
-
\ar[d, open immersion]
\\
&
X
···
&
|[pullback]|K
\ar[l]
-
\ar[d, closed immersion]
\ar[r]
&
\{0\}
-
\ar[d, closed immersion]
\\
&
X
···
\[
\begin{tikzcd}
|[pullback]|\mathbf{1}
-
\ar[r,closed immersion, "0"]
-
\ar[d,open immersion, "1"']
&
\II
-
\ar[d,open immersion, "(-\geq 0)"]
\\
\II
-
\ar[r,closed immersion, "(1\geq -)"']
&
|[pushout]|\Horn
\end{tikzcd}
···
Eliminating singletons, we therefore obtain the familiar categorical description of the Sierpi\'nski cone:
\[
\begin{tikzcd}
-
X\ar[r,closed immersion,"{(0,X)}"]\ar[d] & \II\times X \ar[d,"\gamma_X"description] & X\ar[l,open immersion,swap,"{(1,X)}"]\ar[dl,sloped,swap,hookrightarrow,"\iota_X"] \\
-
\One\ar[r,swap,closed immersion,"\bot_X"] & |[pushout]|X\mathrlap{_\bot}
\end{tikzcd}
\]
\begin{remark}
-
Note that unless $\J$ is consistent, the inclusion $\iota_X\colon X\hookrightarrow X_\bot$ may not be an open immersion.
\end{remark}
Dually, we define the \emph{inverted} Sierpi\'nski cone $X^\top$ of $X$ to be the Sierpi\'nski cone in the geometric context of the distributed lattice $\J\Op$. In particular, we have
···
\subsubsection{The mapping cylinder of a function}
The \emph{(open, closed) mapping cylinder} of a function $f\colon E\to B$ is defined to be (closed, open) fibre cylinder of the family $x:B\vdash \mathsf{fib}_f(x)$:
-
\[
\ClosedMCyl_B(f) :\equiv \ClosedMCyl_{(x:B)}\mathsf{fib}_f(x),\qquad
\OpenMCyl_B(f) :\equiv \OpenMCyl_{(x:B)}\mathsf{fib}_f(x)
-
\]
Restricting attention to the open mapping cylinder, we recall that the summing functor $\sum_B\colon\mathbf{Type}/B\to\mathbf{Type}$ preserves colimits and so the following is a pushout square:
\[
\begin{tikzcd}[column sep=huge]
\sum_{(x:B)}\mathsf{fib}_f(x)
-
\ar[r, closed immersion, "{\sum_{(x:B)}(0, \mathsf{fib}_f(x))}"]
\ar[d, "{\sum_{(x:B)}\star}"']
&
\sum_{(x:B)}\II\times \mathsf{fib}_f(x)
\ar[d, "{\sum_{(x:B)}\gamma_{\mathsf{fib}_f(x)}}"]
\\
\sum_{(x:B)}\mathbf{1}
-
\ar[r, closed immersion, "{\sum_{(x:B)}\bot_{\mathsf{fib}_f(x)}}"']
&
|[pushout]|\sum_{(x:B)} \mathsf{fib}_f(x)_\bot
\end{tikzcd}
···
\[
\begin{tikzcd}
E
-
\ar[r,open immersion, "{(1,E)}"]
\ar[dr,hookrightarrow,sloped,"\iota_f"']
&
\II\times E
\ar[d, "\gamma_f"description]
&
E
-
\ar[r, open immersion, "{(1, E)}"]
-
\ar[l, closed immersion, "{(0, E)}"']
\ar[d, "f"description]
&
\II\times E
\ar[d, "\Flip{\gamma}_f"description]
&
E
-
\ar[l, closed immersion, "{(0,E)}"']
\ar[dl, hookrightarrow, sloped, "\Flip{\iota}_f"']
\\
&
|[sw pushout]|\OpenMCyl_B(f)
&
B
-
\ar[r, open immersion, "\top_f"']
-
\ar[l, closed immersion, "\bot_f"]
&
|[pushout]|\ClosedMCyl_B(f)
\end{tikzcd}
···
\subsubsection{The dominance property}
-
Several results depend on the generic open immersion $\{1\}\hookrightarrow \II$ forming a dominance in the sense of \citet{rosolini:1986}, which is to say that $\J$ is conservative and open immersions are closed under composition.
\begin{definition}
-
We will say that $\J$ is \emph{dominant} when the open immersion $\{1\}\hookrightarrow\II$ forms a dominance.
\end{definition}
\begin{example}
-
As an example, the dual lattice $\J\Op$ is dominant if and only if the closed immersion $\{0\}\hookrightarrow\II$ for $\J$ forms a dominance.
\end{example}
\begin{proposition}[{\citet{sterling2025domainsclassifyingtopoi}}]
···
Rosolini's dominances gives rise to an evident theory of partial maps and partial map classifier. In particular, we define a $\J$-partial map from $X$ to $Y$ to be a function $Z\to Y$ defined on an open subspace $Z$ of $X$. Dually, a $\J\Op$-partial map from $X$ to $Y$ would be a function $Z\to Y$ defined on a closed subspace $Z$ of $X$. When $\J$ is conservative, the partial products $\Lift(Y)$ and $\CoLift(Y)$ classify $\J$-partial and $\J\Op$-partial maps \emph{qua} spans
\[
\begin{tikzcd}[row sep=tiny]
-
Y& \ar[l] U\ar[r,open immersion] & X,
\end{tikzcd}
\qquad
\begin{tikzcd}[row sep=tiny]
-
Y& \ar[l] K\ar[r,closed immersion] & X\text{.}
\end{tikzcd}
\]
···
We refer to the above as the (open, closed) \emph{logical} fibre cylinders of $E$ over $B$ respectively. When $\J$ is conservative, these classify the following kinds of squares respectively:
\[
\begin{tikzcd}
-
U \ar[d, open immersion] \ar[r] & \sum_{(x:B)}E[x]\ar[d, "\pi_1"description] & K\ar[d,closed immersion]\ar[l]\\
X \ar[r] & B & \ar[l] X
\end{tikzcd}
\]
···
\ar[d, hookrightarrow, "\iota_X"']
&
\{1\}
-
\ar[d,open immersion]
\\
X_\bot
\ar[r,"\pi"']
···
is cartesian, where $\pi\colon X_\bot \to \II$ is the map obtained universally from the following square:
\[
\begin{tikzcd}
-
X\ar[r,closed immersion,"{(0,X)}"]\ar[d] & \II\times X\ar[d,"\pi_1"]
\\
-
\mathbf{1}\ar[r,closed immersion,"0"'] & \II
\end{tikzcd}
\]
Therefore, $\iota_X\colon X\hookrightarrow X_\bot$ is open for $\IsF{1}$-connected $X$.
···
of the Sierpi\'nski cone, the described map $\pi\colon X_\bot \to \II$ is precisely the first projection function, whose fibre over generic $i:\II$ is $\IsF{i}*X$. We are asked to check that the fibre of $\pi$ at $1:\II$ is precisely $X$, \emph{i.e.}\ that the canonical map $X \to \IsF{1}*X$ is an equivalence. But this is one of the equivalent formulations of $X$ being $\IsF{1}$-connected.
\end{proof}
-
Dually, the embedding $\Flip{\iota}_X\colon X\hookrightarrow X^\top$ is a closed immersion for $\IsT{0}$-connected $X$. Furthermore, the embeddings $\iota_f\colon E\hookrightarrow \OpenMCyl_B(f)$ and $\Flip{\iota}_f\colon E\hookrightarrow \ClosedMCyl_B(f)$ are open and closed respectively when $f\colon E\to B$ is a $\IsF{1}$-connected map. Of course, $\IsT{0}\cong \IsF{1}$ so $\IsF{1}$-connectedness and $\IsT{0}$-connectedness coincide, but they are \emph{definitionally} distinct properties.
\begin{construction}
When $X$ is $\IsT{0}$-connected, we may construct the \emph{undefined} partial element $\mathsf{undef}_X : \Lift(X)$ using the universal property of the partial product $\Lift(X)$:
\[
\begin{tikzcd}[column sep=large]
X
-
\ar[d,open immersion, "\eta_X"']
&
|[pullback, ne pullback]|\IsT{0}
\ar[l,"!"']
-
\ar[r, closed immersion]
-
\ar[d,open immersion]
&
\{1\}
-
\ar[d,open immersion]
\\
\Lift(X)
&
\One
\ar[l, densely dashed, "\mathsf{undef}_X"]
-
\ar[r,closed immersion, "0"']
&
\II
\end{tikzcd}
···
\[
\begin{tikzcd}[column sep=large]
X
-
\ar[d,open immersion, "\eta_X"']
&
|[pullback, ne pullback]|X
\ar[l,equals]
\ar[r]
-
\ar[d,open immersion,"{(1,X)}"description]
&
\{1\}
-
\ar[d,open immersion]
\\
\Lift(X)
&
···
\[
\begin{tikzcd}[column sep=large]
X
-
\ar[d,open immersion, "\eta_X"']
&
|[pullback, ne pullback]|X
\ar[l,equals]
\ar[r]
-
\ar[d,open immersion,"\iota_X"description]
&
\{1\}
-
\ar[d,open immersion]
\\
\Lift(X)
&
···
% \subsubsection{Slices and co-slices of the interval}
For $i:\II$, consider the following finitely presented $\J$-algebras:
-
\[
\J[\mathsf{x}\leq i] :\equiv
\J[\mathsf{x}]/ (\mathsf{x}\land i =\mathsf{x})\text{,}
\quad
\J[\mathsf{x}\geq i] :\equiv
\J[\mathsf{x}]/ (\mathsf{x}\land i = i)
-
\]
Applying the \emph{spectrum} functor we obtain corresponding subspaces of the interval:
\begin{align*}
···
We also have evident inclusions $\II/i \hookrightarrow \Lift\IsT{i}$ and $i/\II\hookrightarrow \CoLift\IsF{i}$ as in the following classification squares:
\[
\begin{tikzcd}[column sep=small,cramped]
-
\IsT{i}\ar[d,open immersion, "\eta_{\IsT{i}}"'] & |[pullback,ne pullback]|\IsT{i} \ar[r]\ar[l, equals] \ar[d,open immersion]& \{1\}\ar[d,open immersion]
\\
\Lift\IsT{i} & \ar[l,hookrightarrow,densely dashed, "\exists!"] \II/i\ar[r,hookrightarrow] & \II
\end{tikzcd}
\quad
\begin{tikzcd}[column sep=small,cramped]
-
\IsF{i}\ar[d,closed immersion, "\Flip{\eta}_{\IsF{i}}"'] & |[pullback,ne pullback]|\IsF{i} \ar[r]\ar[l,equals] \ar[d,closed immersion]& \{0\}\ar[d,closed immersion]
\\
\CoLift\IsF{i} & \ar[l,hookrightarrow,densely dashed, "\exists!"] i/\II\ar[r,hookrightarrow] & \II
\end{tikzcd}
···
Recalling the definitions of the little Sierpi\'nski cones in either orientation, we have
%
-
\[
\IsT{i}_\bot \equiv \{ j : \II \mid \IsF{j}\lor \IsT{i}\},
\qquad
\IsF{i}^\top \equiv \{ j : \II\mid \IsT{j}\lor \IsF{i} \}
···
\begin{construction}
We consider the following open subspaces of the inner horn and the triangle respectively:
-
\[
\begin{tikzcd}
-
|[pullback]|\{(1\geq i)\mid i:\II\} \ar[r] \ar[d,open immersion] & |[pullback]|\{(1\geq i)\mid i:\II\}\ar[r]\ar[d,open immersion] & \{1\} \ar[d,open immersion]
\\
\Horn \ar[r,hookrightarrow] & \Spx{\Two} \ar[r, "\max"'] & \II
\end{tikzcd}
-
\]
-
-
The open immersions above determine partial products
\begin{align*}
\HornLift(X) &:\equiv
\textstyle
\sum_{(\alpha:\Horn)}
X^{\IsT{\max \alpha}}
-
\\
\TriLift(X) &:\equiv
\textstyle
\sum_{(\alpha:\Spx{\Two})}
···
\begin{construction}\label[construction]{con:evaluation-maps}
For a partial element $x\colon \IsT{i}\to X$, we consider the following little square induced (wild) naturality of $\sigma_{(-)}\colon (-)_\bot\to \Lift$.
-
\[
\begin{tikzcd}[cramped]
-
\IsT{i}_\bot \ar[r,equals] \ar[d,hookrightarrow] & \IsT{i}_\bot\ar[r,"x_\bot"] \ar[d, hookrightarrow, "\sigma_{\IsT{i}}"description] & X_\bot\ar[d, "\sigma_X"]\\
\II/i \ar[r,hookrightarrow] & \Lift\IsT{i} \ar[r,"\Lift(x)"'] & \Lift(X)
\end{tikzcd}
\]
-
Recalling the universal properties of $\Horn$ and $\Spx{\Two}$ \emph{qua} sums via \cref{prop:horn-tri-as-sums} and the definitions of $\HornLift$ and $\TriLift$ as sums, the little squares above may be glued together to form a single square consisting of horizontal ``evaluation maps'':
-
\[
\begin{tikzcd}
\HornLift(X) \ar[d,hookrightarrow] \ar[r,densely dashed,"\epsilon_X^{\Lambda}"] & X_\bot\ar[d, "\sigma_X"]
-
\\
\TriLift(X)\ar[r,densely dashed,"\epsilon_X^\Delta"'] & \Lift(X)
\end{tikzcd}
-
\]
\end{construction}
\begin{lemma}\label[lemma]{con:tau}
···
\end{lemma}
\begin{proof}
Let $C$ be upper Segal complete. We have the following commuting square, in which we aim to show that the left-hand map is an equivalence:
-
\[
\begin{tikzcd}
C^{\TriLift(X)}\ar[d]\ar[r, "\cong"] & {\prod_{(i:\II, x:X^{\IsT{i}})}C^{\IsT{i}_\bot}}\ar[d,"\cong"]
\\
C^{\HornLift(X)}\ar[r,"\cong"]& {\prod_{(i:\II, x:X^{\IsT{i}})}C^{\II/i}}
\end{tikzcd}
\]
-
The upper and lower maps are the depedendent currying/uncurrying equivalences, recalling \cref{prop:horn-tri-as-sums}. The right-hand map is the product of the restriction maps along $\IsT{i}_\bot\hookrightarrow\II/i$, which are equivalences by assumption. We finish with the three-for-two property of equivalences.
\end{proof}
\begin{proposition}[{\citet{pugh-sterling-2025}}]
-
Let $C$ be upper Segal complete. Then for $\IsT{0}$-connected $X$ the restriction map $C^{\sigma_X} \colon (\Lift(X)\to C) \to (X_\bot\to C)$ has a retraction.
\end{proposition}
As mentioned, our construction differs from that of \emph{op.\ cit.}
···
\begin{proof}
We consider the following diagram summarising \cref{con:evaluation-maps,con:tau}:
% Moreover, we have the following commuting square:
-
\[
\begin{tikzcd}
& \HornLift(X) \ar[d,hookrightarrow] \ar[r, "\epsilon_X^{\Lambda}"] & X_\bot\ar[d, "\sigma_X"]
-
\\
\Lift(X) \ar[r,"\tau_X"] \ar[rr, equals,curve={height=18pt}] & \TriLift(X)\ar[r,"\epsilon_X^\Delta"] & \Lift(X)
\end{tikzcd}
\]
-
Recalling \cref{lem:segal-complete-right-orth-hornlift-trilift}, we obtain the following square by dualising with respect to $C$:
\[
\begin{tikzcd}[cramped, column sep=large, row sep=large]
···
\ar[d, shift right=3pt,"\cong"']
&
C^{\Lift(X)}
-
\\
C^{X_\bot}
\ar[r, "C^{\epsilon^\Lambda_X}"']
&
C^{\HornLift(X)}
\ar[u, shift right=3pt,"\cong"']
-
\end{tikzcd}
\]
-
The composite map $C^{X_\bot}\to C^{\Lift(X)}$ traced above is immediately seen to be a retraction of $C^{\sigma_X}$.
\end{proof}
···
\begin{proposition}[{\citet{pugh-sterling-2025}}]
We have a canonical equivalence $\mathsf{SD}_X(C) \cong C^{X_\bot}$ where $\mathsf{SD}_X(C)$ is the following type of ``Sierpi\'nski cone data'' over $C$:
-
\[
-
\mathsf{SD}_X(C) :\equiv
\textstyle\sum_{(c^\bot : C)}
\sum_{(c^\gamma \colon \II\times X\to C)}
\prod_{(x:X)}
c^\gamma(0,x) = c^\bot
-
\]
\end{proposition}
\begin{proof}
This is simply the universal property of $X_\bot$: the space of maps out of a pushout form a pullback.
\end{proof}
-
-
\begin{proposition}[{\citet{pugh-sterling-2025}}]
We consider the following graph structure on $\mathsf{SD}_X(C)$:
\begin{align*}
&(c^\bot_0,c^\gamma_0,c^H_0)
···
(c^\bot_1,c^\gamma_1,c^H_1)
:\equiv
\\
-
&\quad
\textstyle
\sum_{(c_{01}^\bot \colon c_0^\bot = c_1^\bot)}
-
\sum_{(c_{01}^\gamma : c_0^\gamma \sim c_1^\gamma)}
\\
&\quad\textstyle
-
\prod_{(x:X)}
-
c_0^Hx \bullet c_{01}^\gamma(0,x)
=
c_{01}^\bot \bullet c_1^Hx
\end{align*}
-
-
For each $\mathbf{c}:\mathsf{SD}_X(C)$, the corresponding family \[ \mathbf{c}':\mathsf{SD}_X(C)\vdash \textstyle\sum_{(\mathbf{c}':\mathsf{SD}_X(C))}\mathbf{c}\approx_{\mathsf{SD}_X(C)}\mathbf{c}' \] of ``fans extending from $\mathbf{c}$'' is torsorial in the sense that its sum is constractible. Hence from the fundamental theorem of identity types~\citep{Rijke_2025} we obtain a canonical family of equivalences
-
\[
-
\mathbf{c}_0,\mathbf{c}_1 : \mathsf{SD}_X(C)\vdash
\mathbf{c}_0=\mathbf{c}_1
\to \mathbf{c}_0\approx_{\mathsf{SD}_X(C)}\mathbf{c}_1\text{.}
-
\]
\end{proposition}
\begin{definition}
-
For $\IsF{1}$-connected $X$, the \emph{Sierpi\'nski restriction} of a $f\colon \Lift(X)\to C$ is defined be the following Sierpi\'nski cone datum over $C$:
\begin{align*}
-
\mathsf{r}_f^\bot &:\equiv f (0,?)
\end{align*}
-
\textcolor{red}{I think I actually need to replace $\IsF{1}$-connectedness with $\IsT{0}$-connectedness.}
\end{definition}
Now we reformulate the data of a section to $C^{\sigma_X}$ in terms of \emph{extensions} of Sierpi\'nski cone data.
\begin{definition}
-
For $\IsT{0}$-connected $X$, an \emph{extension} of a Sierpi\'nski cone datum $\mathbf{c}:\mathsf{SD}_X(C)$ is defined to be a mapping
\end{definition}
\section{Existence of logical mapping cylinders}
···
\NewDocumentCommand\TriLift{}{\mathsf{L}^{\Delta}}
\tikzcdset{
+
open embedding/.style={
-{Triangle[open]}, hook
},
+
closed embedding/.style={
-{Triangle[fill=black]}, hook
}
}
···
The two-handedness of $\II$ extends to an identification between the \emph{Sierpi\'nski cone} and the \emph{partial map classifier} of any space $\XX$, which we illuminate below. The Sierpi\'nski cone $\XX_\bot$ of a space $\XX$ is the following co-comma square, which we may compute by means of a pushout:
\[
\begin{tikzcd}
+
\XX\ar[r,equals]\ar[d] & \XX \ar[d,open embedding,"\iota_\XX"]\\
+
\One\arrow[r,swap,closed embedding,"\bot_\XX"]\ar[ur,phantom,"{\Uparrow}\gamma_\XX"] & \XX\mathrlap{_\bot}
\end{tikzcd}
\qquad
\begin{tikzcd}
+
\XX\ar[r,closed embedding,"{(0,\XX)}"]\ar[d] & \II\times\XX \ar[d,"\gamma_\XX"description] & \XX\ar[l,open embedding,swap,"{(1,\XX)}"]\ar[dl,sloped,swap,open embedding,"\iota_\XX"] \\
+
\One\ar[r,swap,closed embedding,"\bot_\XX"] & |[pushout]|\XX\mathrlap{_\bot}
\end{tikzcd}
\]
···
The (open) partial map classifier $\eta_\XX\colon \XX\hookrightarrow \Lift(\XX)$ is, on the other hand, the partial product of $\XX$ with the open embedding $\{1\}\hookrightarrow \II$ and classifies spans
\[
\begin{tikzcd}
+
\XX & U\ar[l]\ar[r,open embedding]& \mathbb{Y}
\end{tikzcd}
\]
where $U$ is an \emph{open} subspace of $\mathbb{Y}$, \emph{i.e.}\ a pullback of $\{1\}\hookrightarrow \II$ in the sense that every such span arises in the context of a unique pullback square:
\[
\begin{tikzcd}
+
|[pullback]|U\ar[r]\ar[d,open embedding] & \XX\ar[d,open embedding,"\eta_\XX"]\\
\mathbb{Y}\ar[r,densely dashed,swap,"\exists!"] & \Lift(\XX)
\end{tikzcd}
\]
···
\[
\begin{tikzcd}
+
\XX\ar[r,equals]\ar[d] & \XX \ar[d,open embedding,"\eta_\XX"]\\
+
\One\arrow[r,swap,closed embedding,"\bot_\XX"]\ar[ur,phantom,"{\Uparrow}"] & \Lift(\XX)
\\
+
|[gray, sw muted pullback]|\varnothing \ar[u,gray,open embedding]\ar[r,gray,-{Triangle[fill=gray]}, hook] & |[gray]|\XX \ar[u,swap,gray,open embedding,"\eta_\XX"]
\end{tikzcd}
\qquad
\begin{tikzcd}
+
|[pullback]|\XX\ar[r,equals]\ar[d,open embedding,swap,"\iota_\XX"] & \XX\ar[d,open embedding,"\eta_\XX"]\\
\XX_\bot\ar[r,densely dashed,swap,"\exists!"] & \Lift(\XX)
\end{tikzcd}
\]
···
The Sierpi\'nski cone is a special case of a more general co-comma construction that yields the \emph{Artin glueing} or \emph{closed mapping cylinder} of a function $f\colon X\to Y$:
\[
\begin{tikzcd}
+
X\ar[r,equals]\ar[d,swap,"f"] & X \ar[d,open embedding,"\iota_f"]\\
+
Y\arrow[r,swap,closed embedding,"\bot_f"]\ar[ur,phantom,"{\Uparrow}\gamma_f"] & f \uparrow X
\end{tikzcd}
\]
···
and under this identification, the Artin glueing of $f$ becomes the sum of all the Sierpi\'nski cones of the fibres of $f\colon X\to Y$,
\[
\begin{tikzcd}[column sep=huge]
+
\sum_{(y:Y)}\mathsf{fib}_f(y)\ar[r,equals]\ar[d,swap,"\sum_{(y:Y)}\star"] & \sum_{(y:Y)}\mathsf{fib}_f(y) \ar[d,open embedding,"\sum_{(y:Y)}\iota_{\mathsf{fib}_f(y)}"]\\
+
\sum_{(y:Y)}\mathbf{1}\arrow[r,swap,closed embedding,"\sum_{(y:Y)}\bot_{\mathsf{fib}_f(y)}"]\ar[ur,phantom,"{\Uparrow}\sum_{(y:Y)}\gamma_{\mathsf{fib}_f(y)}"] & \sum_{(y:Y)} (\mathsf{fib}_f(y))_\bot
\end{tikzcd}
\]
keeping in mind that the summing functor \[ \textstyle\sum_{Y}\colon \mathbf{Type}/Y\to \mathbf{Type} \]
···
The Sierpi\'nski cone of a space $X$ is contains $X$ as an \emph{open} subspace above a minimal closed point as depicted below:
\[
\begin{tikzcd}
+
X\ar[r,equals]\ar[d] & X \ar[d,open embedding,"\iota_X"]\\
+
\One\arrow[r,swap,closed embedding,"\bot_X"]\ar[ur,phantom,"{\Uparrow}\gamma_X"] & X\mathrlap{_\bot}
\end{tikzcd}
\]
There is a dual construction $X^\top$ in which we change the orientation of the cylinder so as to obtain $X$ as a \emph{closed} subspace under a maximal open point, \citet{taylor:2000} refers to as \emph{inverted Sierpi\'nski cone}:
\[
\begin{tikzcd}
+
X\ar[r,equals]\ar[d] & X \ar[d,closed embedding,"\Flip{\iota}_X"]\\
+
\One\arrow[r,swap,open embedding,"\top_X"]\ar[ur,phantom,"{\Downarrow}\Flip{\gamma}_X"] & X\mathrlap{^\top}
\end{tikzcd}
\]
···
Each bounded distributive lattice $\J$ generates a ``geometry'' of cubes, simplices, horns, \emph{etc.}\ that are all obtained by glueing together various $\J$-spectrums.
+
\subsubsection{The interval; open and closed embeddings}
We will write $\II$ to denote the ``interval'', which we may define to be the underlying set of $\J$ itself. The ``observational topology'' $\Opens{\J}X \equiv \J^X$ of a space $X$ therefore has $\II^X$ as its underlying set/space. The role of the interval in representing the intrinsic topology of a given space leads to a simple description of \emph{open} and \emph{closed} subspaces.
\begin{definition}
+
An embedding $X\hookrightarrow Y$ is called an \emph{open embedding} when it arises as the pullback of the inclusion $\{1\}\hookrightarrow \II$, and a \emph{closed embedding} when it arises as a pullback of the inclusion $\{0\}\hookrightarrow \II$.
\end{definition}
+
The open and closed embeddings
\[
\begin{tikzcd}
\{0\}
+
\ar[r,closed embedding]
&
\II
&
+
\ar[l, open embedding]
\{1\}
\end{tikzcd}
\]
···
&
|[pullback]|U
\ar[l]
+
\ar[d, open embedding]
\ar[r]
&
\{1\}
+
\ar[d, open embedding]
\\
&
X
···
&
|[pullback]|K
\ar[l]
+
\ar[d, closed embedding]
\ar[r]
&
\{0\}
+
\ar[d, closed embedding]
\\
&
X
···
\[
\begin{tikzcd}
|[pullback]|\mathbf{1}
+
\ar[r,closed embedding, "0"]
+
\ar[d,open embedding, "1"']
&
\II
+
\ar[d,open embedding, "(-\geq 0)"]
\\
\II
+
\ar[r,closed embedding, "(1\geq -)"']
&
|[pushout]|\Horn
\end{tikzcd}
···
Eliminating singletons, we therefore obtain the familiar categorical description of the Sierpi\'nski cone:
\[
\begin{tikzcd}
+
X\ar[r,closed embedding,"{(0,X)}"]\ar[d] & \II\times X \ar[d,"\gamma_X"description] & X\ar[l,open embedding,swap,"{(1,X)}"]\ar[dl,sloped,swap,hookrightarrow,"\iota_X"] \\
+
\One\ar[r,swap,closed embedding,"\bot_X"] & |[pushout]|X\mathrlap{_\bot}
\end{tikzcd}
\]
\begin{remark}
+
Note that unless $\J$ is consistent, the inclusion $\iota_X\colon X\hookrightarrow X_\bot$ may not be an open embedding.
\end{remark}
Dually, we define the \emph{inverted} Sierpi\'nski cone $X^\top$ of $X$ to be the Sierpi\'nski cone in the geometric context of the distributed lattice $\J\Op$. In particular, we have
···
\subsubsection{The mapping cylinder of a function}
The \emph{(open, closed) mapping cylinder} of a function $f\colon E\to B$ is defined to be (closed, open) fibre cylinder of the family $x:B\vdash \mathsf{fib}_f(x)$:
+
\[
\ClosedMCyl_B(f) :\equiv \ClosedMCyl_{(x:B)}\mathsf{fib}_f(x),\qquad
\OpenMCyl_B(f) :\equiv \OpenMCyl_{(x:B)}\mathsf{fib}_f(x)
+
\]
Restricting attention to the open mapping cylinder, we recall that the summing functor $\sum_B\colon\mathbf{Type}/B\to\mathbf{Type}$ preserves colimits and so the following is a pushout square:
\[
\begin{tikzcd}[column sep=huge]
\sum_{(x:B)}\mathsf{fib}_f(x)
+
\ar[r, closed embedding, "{\sum_{(x:B)}(0, \mathsf{fib}_f(x))}"]
\ar[d, "{\sum_{(x:B)}\star}"']
&
\sum_{(x:B)}\II\times \mathsf{fib}_f(x)
\ar[d, "{\sum_{(x:B)}\gamma_{\mathsf{fib}_f(x)}}"]
\\
\sum_{(x:B)}\mathbf{1}
+
\ar[r, closed embedding, "{\sum_{(x:B)}\bot_{\mathsf{fib}_f(x)}}"']
&
|[pushout]|\sum_{(x:B)} \mathsf{fib}_f(x)_\bot
\end{tikzcd}
···
\[
\begin{tikzcd}
E
+
\ar[r,open embedding, "{(1,E)}"]
\ar[dr,hookrightarrow,sloped,"\iota_f"']
&
\II\times E
\ar[d, "\gamma_f"description]
&
E
+
\ar[r, open embedding, "{(1, E)}"]
+
\ar[l, closed embedding, "{(0, E)}"']
\ar[d, "f"description]
&
\II\times E
\ar[d, "\Flip{\gamma}_f"description]
&
E
+
\ar[l, closed embedding, "{(0,E)}"']
\ar[dl, hookrightarrow, sloped, "\Flip{\iota}_f"']
\\
&
|[sw pushout]|\OpenMCyl_B(f)
&
B
+
\ar[r, open embedding, "\top_f"']
+
\ar[l, closed embedding, "\bot_f"]
&
|[pushout]|\ClosedMCyl_B(f)
\end{tikzcd}
···
\subsubsection{The dominance property}
+
Several results depend on the generic open embedding $\{1\}\hookrightarrow \II$ forming a dominance in the sense of \citet{rosolini:1986}, which is to say that $\J$ is conservative and open embeddings are closed under composition.
\begin{definition}
+
We will say that $\J$ is \emph{dominant} when the open embedding $\{1\}\hookrightarrow\II$ forms a dominance.
\end{definition}
\begin{example}
+
As an example, the dual lattice $\J\Op$ is dominant if and only if the closed embedding $\{0\}\hookrightarrow\II$ for $\J$ forms a dominance.
\end{example}
\begin{proposition}[{\citet{sterling2025domainsclassifyingtopoi}}]
···
Rosolini's dominances gives rise to an evident theory of partial maps and partial map classifier. In particular, we define a $\J$-partial map from $X$ to $Y$ to be a function $Z\to Y$ defined on an open subspace $Z$ of $X$. Dually, a $\J\Op$-partial map from $X$ to $Y$ would be a function $Z\to Y$ defined on a closed subspace $Z$ of $X$. When $\J$ is conservative, the partial products $\Lift(Y)$ and $\CoLift(Y)$ classify $\J$-partial and $\J\Op$-partial maps \emph{qua} spans
\[
\begin{tikzcd}[row sep=tiny]
+
Y& \ar[l] U\ar[r,open embedding] & X,
\end{tikzcd}
\qquad
\begin{tikzcd}[row sep=tiny]
+
Y& \ar[l] K\ar[r,closed embedding] & X\text{.}
\end{tikzcd}
\]
···
We refer to the above as the (open, closed) \emph{logical} fibre cylinders of $E$ over $B$ respectively. When $\J$ is conservative, these classify the following kinds of squares respectively:
\[
\begin{tikzcd}
+
U \ar[d, open embedding] \ar[r] & \sum_{(x:B)}E[x]\ar[d, "\pi_1"description] & K\ar[d,closed embedding]\ar[l]\\
X \ar[r] & B & \ar[l] X
\end{tikzcd}
\]
···
\ar[d, hookrightarrow, "\iota_X"']
&
\{1\}
+
\ar[d,open embedding]
\\
X_\bot
\ar[r,"\pi"']
···
is cartesian, where $\pi\colon X_\bot \to \II$ is the map obtained universally from the following square:
\[
\begin{tikzcd}
+
X\ar[r,closed embedding,"{(0,X)}"]\ar[d] & \II\times X\ar[d,"\pi_1"]
\\
+
\mathbf{1}\ar[r,closed embedding,"0"'] & \II
\end{tikzcd}
\]
Therefore, $\iota_X\colon X\hookrightarrow X_\bot$ is open for $\IsF{1}$-connected $X$.
···
of the Sierpi\'nski cone, the described map $\pi\colon X_\bot \to \II$ is precisely the first projection function, whose fibre over generic $i:\II$ is $\IsF{i}*X$. We are asked to check that the fibre of $\pi$ at $1:\II$ is precisely $X$, \emph{i.e.}\ that the canonical map $X \to \IsF{1}*X$ is an equivalence. But this is one of the equivalent formulations of $X$ being $\IsF{1}$-connected.
\end{proof}
+
Dually, the embedding $\Flip{\iota}_X\colon X\hookrightarrow X^\top$ is a closed embedding for $\IsT{0}$-connected $X$. Furthermore, the embeddings $\iota_f\colon E\hookrightarrow \OpenMCyl_B(f)$ and $\Flip{\iota}_f\colon E\hookrightarrow \ClosedMCyl_B(f)$ are open and closed respectively when $f\colon E\to B$ is a $\IsF{1}$-connected map. Of course, $\IsT{0}\cong \IsF{1}$ so $\IsF{1}$-connectedness and $\IsT{0}$-connectedness coincide, but they are \emph{definitionally} distinct properties.
\begin{construction}
When $X$ is $\IsT{0}$-connected, we may construct the \emph{undefined} partial element $\mathsf{undef}_X : \Lift(X)$ using the universal property of the partial product $\Lift(X)$:
\[
\begin{tikzcd}[column sep=large]
X
+
\ar[d,open embedding, "\eta_X"']
&
|[pullback, ne pullback]|\IsT{0}
\ar[l,"!"']
+
\ar[r, closed embedding]
+
\ar[d,open embedding]
&
\{1\}
+
\ar[d,open embedding]
\\
\Lift(X)
&
\One
\ar[l, densely dashed, "\mathsf{undef}_X"]
+
\ar[r,closed embedding, "0"']
&
\II
\end{tikzcd}
···
\[
\begin{tikzcd}[column sep=large]
X
+
\ar[d,open embedding, "\eta_X"']
&
|[pullback, ne pullback]|X
\ar[l,equals]
\ar[r]
+
\ar[d,open embedding,"{(1,X)}"description]
&
\{1\}
+
\ar[d,open embedding]
\\
\Lift(X)
&
···
\[
\begin{tikzcd}[column sep=large]
X
+
\ar[d,open embedding, "\eta_X"']
&
|[pullback, ne pullback]|X
\ar[l,equals]
\ar[r]
+
\ar[d,open embedding,"\iota_X"description]
&
\{1\}
+
\ar[d,open embedding]
\\
\Lift(X)
&
···
% \subsubsection{Slices and co-slices of the interval}
For $i:\II$, consider the following finitely presented $\J$-algebras:
+
\[
\J[\mathsf{x}\leq i] :\equiv
\J[\mathsf{x}]/ (\mathsf{x}\land i =\mathsf{x})\text{,}
\quad
\J[\mathsf{x}\geq i] :\equiv
\J[\mathsf{x}]/ (\mathsf{x}\land i = i)
+
\]
Applying the \emph{spectrum} functor we obtain corresponding subspaces of the interval:
\begin{align*}
···
We also have evident inclusions $\II/i \hookrightarrow \Lift\IsT{i}$ and $i/\II\hookrightarrow \CoLift\IsF{i}$ as in the following classification squares:
\[
\begin{tikzcd}[column sep=small,cramped]
+
\IsT{i}\ar[d,open embedding, "\eta_{\IsT{i}}"'] & |[pullback,ne pullback]|\IsT{i} \ar[r]\ar[l, equals] \ar[d,open embedding]& \{1\}\ar[d,open embedding]
\\
\Lift\IsT{i} & \ar[l,hookrightarrow,densely dashed, "\exists!"] \II/i\ar[r,hookrightarrow] & \II
\end{tikzcd}
\quad
\begin{tikzcd}[column sep=small,cramped]
+
\IsF{i}\ar[d,closed embedding, "\Flip{\eta}_{\IsF{i}}"'] & |[pullback,ne pullback]|\IsF{i} \ar[r]\ar[l,equals] \ar[d,closed embedding]& \{0\}\ar[d,closed embedding]
\\
\CoLift\IsF{i} & \ar[l,hookrightarrow,densely dashed, "\exists!"] i/\II\ar[r,hookrightarrow] & \II
\end{tikzcd}
···
Recalling the definitions of the little Sierpi\'nski cones in either orientation, we have
%
+
\[
\IsT{i}_\bot \equiv \{ j : \II \mid \IsF{j}\lor \IsT{i}\},
\qquad
\IsF{i}^\top \equiv \{ j : \II\mid \IsT{j}\lor \IsF{i} \}
···
\begin{construction}
We consider the following open subspaces of the inner horn and the triangle respectively:
+
\[
\begin{tikzcd}
+
|[pullback]|\{(1\geq i)\mid i:\II\} \ar[r] \ar[d,open embedding] & |[pullback]|\{(1\geq i)\mid i:\II\}\ar[r]\ar[d,open embedding] & \{1\} \ar[d,open embedding]
\\
\Horn \ar[r,hookrightarrow] & \Spx{\Two} \ar[r, "\max"'] & \II
\end{tikzcd}
+
\]
+
+
The open embeddings above determine partial products
\begin{align*}
\HornLift(X) &:\equiv
\textstyle
\sum_{(\alpha:\Horn)}
X^{\IsT{\max \alpha}}
+
\\
\TriLift(X) &:\equiv
\textstyle
\sum_{(\alpha:\Spx{\Two})}
···
\begin{construction}\label[construction]{con:evaluation-maps}
For a partial element $x\colon \IsT{i}\to X$, we consider the following little square induced (wild) naturality of $\sigma_{(-)}\colon (-)_\bot\to \Lift$.
+
\[
\begin{tikzcd}[cramped]
+
\IsT{i}_\bot \ar[r,equals] \ar[d,hookrightarrow] & \IsT{i}_\bot\ar[r,"x_\bot"] \ar[d, hookrightarrow, "\sigma_{\IsT{i}}"description] & X_\bot\ar[d, "\sigma_X"]\\
\II/i \ar[r,hookrightarrow] & \Lift\IsT{i} \ar[r,"\Lift(x)"'] & \Lift(X)
\end{tikzcd}
\]
+
Recalling the universal properties of $\Horn$ and $\Spx{\Two}$ \emph{qua} sums via \cref{prop:horn-tri-as-sums} and the definitions of $\HornLift$ and $\TriLift$ as sums, the little squares above may be glued together to form a single square consisting of horizontal ``evaluation maps'':
+
\[
\begin{tikzcd}
\HornLift(X) \ar[d,hookrightarrow] \ar[r,densely dashed,"\epsilon_X^{\Lambda}"] & X_\bot\ar[d, "\sigma_X"]
+
\\
\TriLift(X)\ar[r,densely dashed,"\epsilon_X^\Delta"'] & \Lift(X)
\end{tikzcd}
+
\]
\end{construction}
\begin{lemma}\label[lemma]{con:tau}
···
\end{lemma}
\begin{proof}
Let $C$ be upper Segal complete. We have the following commuting square, in which we aim to show that the left-hand map is an equivalence:
+
\[
\begin{tikzcd}
C^{\TriLift(X)}\ar[d]\ar[r, "\cong"] & {\prod_{(i:\II, x:X^{\IsT{i}})}C^{\IsT{i}_\bot}}\ar[d,"\cong"]
\\
C^{\HornLift(X)}\ar[r,"\cong"]& {\prod_{(i:\II, x:X^{\IsT{i}})}C^{\II/i}}
\end{tikzcd}
\]
+
The upper and lower maps are the depedendent currying/uncurrying equivalences, recalling \cref{prop:horn-tri-as-sums}. The right-hand map is the product of the restriction maps along $\IsT{i}_\bot\hookrightarrow\II/i$, which are equivalences by assumption. We finish with the three-for-two property of equivalences.
\end{proof}
\begin{proposition}[{\citet{pugh-sterling-2025}}]
+
Let $C$ be upper Segal complete. Then for $\IsT{0}$-connected $X$ the restriction map $C^{\sigma_X} \colon (\Lift(X)\to C) \to (X_\bot\to C)$ has a retraction.
\end{proposition}
As mentioned, our construction differs from that of \emph{op.\ cit.}
···
\begin{proof}
We consider the following diagram summarising \cref{con:evaluation-maps,con:tau}:
% Moreover, we have the following commuting square:
+
\[
\begin{tikzcd}
& \HornLift(X) \ar[d,hookrightarrow] \ar[r, "\epsilon_X^{\Lambda}"] & X_\bot\ar[d, "\sigma_X"]
+
\\
\Lift(X) \ar[r,"\tau_X"] \ar[rr, equals,curve={height=18pt}] & \TriLift(X)\ar[r,"\epsilon_X^\Delta"] & \Lift(X)
\end{tikzcd}
\]
+
Recalling \cref{lem:segal-complete-right-orth-hornlift-trilift}, we obtain the following square by dualising with respect to $C$:
\[
\begin{tikzcd}[cramped, column sep=large, row sep=large]
···
\ar[d, shift right=3pt,"\cong"']
&
C^{\Lift(X)}
+
\\
C^{X_\bot}
\ar[r, "C^{\epsilon^\Lambda_X}"']
&
C^{\HornLift(X)}
\ar[u, shift right=3pt,"\cong"']
+
\end{tikzcd}
\]
+
The composite map $C^{X_\bot}\to C^{\Lift(X)}$ traced above is immediately seen to be a retraction of $C^{\sigma_X}$.
\end{proof}
···
\begin{proposition}[{\citet{pugh-sterling-2025}}]
We have a canonical equivalence $\mathsf{SD}_X(C) \cong C^{X_\bot}$ where $\mathsf{SD}_X(C)$ is the following type of ``Sierpi\'nski cone data'' over $C$:
+
\[
+
\mathsf{SD}_X(C) :\equiv
\textstyle\sum_{(c^\bot : C)}
\sum_{(c^\gamma \colon \II\times X\to C)}
\prod_{(x:X)}
c^\gamma(0,x) = c^\bot
+
\]
\end{proposition}
\begin{proof}
This is simply the universal property of $X_\bot$: the space of maps out of a pushout form a pullback.
\end{proof}
+
+
\begin{proposition}
We consider the following graph structure on $\mathsf{SD}_X(C)$:
\begin{align*}
&(c^\bot_0,c^\gamma_0,c^H_0)
···
(c^\bot_1,c^\gamma_1,c^H_1)
:\equiv
\\
+
&\quad
\textstyle
\sum_{(c_{01}^\bot \colon c_0^\bot = c_1^\bot)}
+
\prod_{(x:X)}
+
\sum_{(c_{01}^\gamma : c_0^\gamma (-,x) \sim c_1^\gamma (-,x))}
\\
&\quad\textstyle
+
c_0^Hx \bullet c_{01}^\gamma 0
=
c_{01}^\bot \bullet c_1^Hx
\end{align*}
+
+
For each $\mathbf{c}:\mathsf{SD}_X(C)$, the corresponding family \[ \mathbf{c}':\mathsf{SD}_X(C)\vdash \textstyle\sum_{(\mathbf{c}':\mathsf{SD}_X(C))}\mathbf{c}\approx_{\mathsf{SD}_X(C)}\mathbf{c}' \] of ``fans extending from $\mathbf{c}$'' is torsorial in the sense that its sum is contractible. Hence from the fundamental theorem of identity types~\citep{Rijke_2025} we obtain a canonical family of equivalences
+
\[
+
\mathbf{c}_0,\mathbf{c}_1 : \mathsf{SD}_X(C)\vdash
\mathbf{c}_0=\mathbf{c}_1
\to \mathbf{c}_0\approx_{\mathsf{SD}_X(C)}\mathbf{c}_1\text{.}
+
\]
\end{proposition}
\begin{definition}
+
The following \emph{Sierpi\'nski restriction} operation converts functions $\Lift(X)\to C$ to \emph{Sierpi\'nski cone data} when $X$ is $\IsT{0}$-connected:
\begin{align*}
+
&\mathsf{restrict}_X : \mathsf{isContr}~X^{\IsT{0}}\to (\Lift(X)\to C)\to \mathsf{SD}_X(C)\\
+
&\mathsf{restrict}_X^\bot~\chi~f :\equiv f\,(0, \mathsf{centre}_\chi)\\
+
&\mathsf{restrict}_X^\gamma~\chi~f~(i,x) :\equiv f\,(i, \lambda\_\mathpunct{.}x)\\
+
&\mathsf{restrict}_X^H~\chi~f~x :\equiv \mathsf{ap}_{f(0,-)} (\mathsf{paths}_\chi~(\lambda\_\mathpunct{.}x))
+
% \mathsf{r}_f^\bot &:\equiv f (0,?)
\end{align*}
+
+
We have generalised the definition of the Sierpi\'nski restriction over the proof that $X$ is $\IsT{0}$-connected, which will come in handy later.
\end{definition}
Now we reformulate the data of a section to $C^{\sigma_X}$ in terms of \emph{extensions} of Sierpi\'nski cone data.
\begin{definition}
+
Now we define the type of \emph{extensions} of a Sierpi\'nski cone datum, again abstracting over the proof that the domain in $\IsT{0}$-connected:
+
%For $\IsT{0}$-connected $X$, an \emph{extension} of a Sierpi\'nski cone datum $\mathbf{c}:\mathsf{SD}_X(C)$ is defined to be a %%
+
\begin{align*}
+
&\mathsf{SpExt}_X : \mathsf{isContr}~X^{\IsT{0}} \to \mathsf{SD}_X(C)\to \mathbf{Type}\\
+
&\mathsf{SpExt}_X~\chi~\mathbf{c} :\equiv
+
\textstyle\sum_{(f \colon \Lift(X)\to C)}
+
\mathsf{restrict}_X~\chi~f \approx_{\mathsf{SD}_X(C)} \mathbf{c}
+
\end{align*}
\end{definition}
+
\begin{corollary}
+
For each $X$ with $\chi:\mathsf{isContr}~X^{\IsT{0}}$ and $\mathbf{c}:\mathsf{SD}_X(C)$, the type of extensions $\mathsf{SpExt}_X~\chi~\mathbf{c}$ is canonically equivalent to the fibre of $C^{\sigma_X}\colon C^{\Lift(X)}\to C^{X_\bot}$ at the function $X_\bot\to C$ induced by the Sierpi\'nski cone datum $\mathbf{c}$. Moreover, $C$ is Sierpi\'nski complete if and only if each $\mathsf{SpExt}_X~\chi~\mathbf{c}$ is contractible.
+
\end{corollary}
+
+
Hence a section of $C^{\sigma_X}$ is precisely an assignment
+
\[
+
\textstyle
+
\prod_{(\chi:\mathsf{isContr}~X^{\IsT{0}})}
+
\prod_{(\mathbf{c}:\mathsf{SD}_X(C))}
+
\mathsf{SpEx}_X~\chi~\mathbf{c}
+
\]
+
of extensions of Sierpi\'nski cone data to $\Lift(X)$. It is \emph{this} assignment that we shall construct.
\section{Existence of logical mapping cylinders}