nixos/spark: add test

Changed files
+68
nixos
+28
nixos/tests/spark/default.nix
···
+
import ../make-test-python.nix ({...}: {
+
name = "spark";
+
+
nodes = {
+
worker = { nodes, pkgs, ... }: {
+
virtualisation.memorySize = 1024;
+
services.spark.worker = {
+
enable = true;
+
master = "master:7077";
+
};
+
};
+
master = { config, pkgs, ... }: {
+
services.spark.master = {
+
enable = true;
+
bind = "0.0.0.0";
+
};
+
networking.firewall.allowedTCPPorts = [ 22 7077 8080 ];
+
};
+
};
+
+
testScript = ''
+
master.wait_for_unit("spark-master.service")
+
worker.wait_for_unit("spark-worker.service")
+
worker.copy_from_host( "${./spark_sample.py}", "/spark_sample.py" )
+
assert "<title>Spark Master at spark://" in worker.succeed("curl -sSfkL http://master:8080/")
+
worker.succeed("spark-submit --master spark://master:7077 --executor-memory 512m --executor-cores 1 /spark_sample.py")
+
'';
+
})
+40
nixos/tests/spark/spark_sample.py
···
+
from pyspark.sql import Row, SparkSession
+
from pyspark.sql import functions as F
+
from pyspark.sql.functions import udf
+
from pyspark.sql.types import *
+
from pyspark.sql.functions import explode
+
+
def explode_col(weight):
+
return int(weight//10) * [10.0] + ([] if weight%10==0 else [weight%10])
+
+
spark = SparkSession.builder.getOrCreate()
+
+
dataSchema = [
+
StructField("feature_1", FloatType()),
+
StructField("feature_2", FloatType()),
+
StructField("bias_weight", FloatType())
+
]
+
+
data = [
+
Row(0.1, 0.2, 10.32),
+
Row(0.32, 1.43, 12.8),
+
Row(1.28, 1.12, 0.23)
+
]
+
+
df = spark.createDataFrame(spark.sparkContext.parallelize(data), StructType(dataSchema))
+
+
normalizing_constant = 100
+
sum_bias_weight = df.select(F.sum('bias_weight')).collect()[0][0]
+
normalizing_factor = normalizing_constant / sum_bias_weight
+
df = df.withColumn('normalized_bias_weight', df.bias_weight * normalizing_factor)
+
df = df.drop('bias_weight')
+
df = df.withColumnRenamed('normalized_bias_weight', 'bias_weight')
+
+
my_udf = udf(lambda x: explode_col(x), ArrayType(FloatType()))
+
df1 = df.withColumn('explode_val', my_udf(df.bias_weight))
+
df1 = df1.withColumn("explode_val_1", explode(df1.explode_val)).drop("explode_val")
+
df1 = df1.drop('bias_weight').withColumnRenamed('explode_val_1', 'bias_weight')
+
+
df1.show()
+
+
assert(df1.count() == 12)