Working on the section

Changed files
+95 -16
+83 -15
lics.tex
···
\subsubsection{The mapping cylinder of a function}
The \emph{(open, closed) mapping cylinder} of a function $f\colon E\to B$ is defined to be (closed, open) fibre cylinder of the family $x:B\vdash \mathsf{fib}_f(x)$:
-
\begin{align*}
-
\OpenMCyl_B(f) &:\equiv \OpenMCyl_{(x:B)}\mathsf{fib}_f(x)\\
-
\ClosedMCyl_B(f) &:\equiv \ClosedMCyl_{(x:B)}\mathsf{fib}_f(x)
-
\end{align*}
+
\[
+
\ClosedMCyl_B(f) :\equiv \ClosedMCyl_{(x:B)}\mathsf{fib}_f(x),\qquad
+
\OpenMCyl_B(f) :\equiv \OpenMCyl_{(x:B)}\mathsf{fib}_f(x)
+
\]
Restricting attention to the open mapping cylinder, we recall that the summing functor $\sum_B\colon\mathbf{Type}/B\to\mathbf{Type}$ preserves colimits and so the following is a pushout square:
\[
···
\begin{remark}
-
Evidently, $\IsT{i}$ is $\IsF{1}$ connected for any $i:\II$.
+
Evidently, $\IsT{i}$ is both $\IsF{1}$-connected and $\IsT{0}$-connected for any $i:\II$.
\end{remark}
\begin{lemma}\label[lemma]{lem:X-01-connected-incl-open}
···
\citet{pugh-sterling-2025} proved a restricted variant of \cref{thm:upper-segal-implies-sierpinski} that applies only to sets, \emph{i.e.}\ $0$-truncated types. This restriction was prohibitive to the study of \emph{higher} domains or \emph{higher} categories, seeing as a synthetic $(\infty,1)$-category is $0$-truncated if and only if it is a partial order. Our contribution is a proof strategy that does not resort to truncation.
-
We will divide the proof of \cref{thm:upper-segal-implies-sierpinski} into two parts, showing separately that for an upper Segal complete type $C$, each restriction map \[ C^{\sigma_X} \colon (\Lift(X)\to C) \to (X_\bot\to C) \] for $\IsF{1}$-connected $X$ is a section and a retraction. In fact, the retraction property of $C^{\sigma_X}$ was verified unconditionally by \citet{pugh-sterling-2025}, but we have a more conceptual proof that we will show. On the other hand, the section property of $C^{\sigma_X}$ without side conditions is entirely new.
+
We will divide the proof of \cref{thm:upper-segal-implies-sierpinski} into two parts, showing separately that for an upper Segal complete type $C$, each restriction map \[ C^{\sigma_X} \colon (\Lift(X)\to C) \to (X_\bot\to C) \] for $\IsF{1}$-connected $X$ is a section and a retraction.
+
+
\subsubsection{A retraction to the comparison map}
+
+
In fact, a retraction of $C^{\sigma_X}$ was exhibited unconditionally by \citet{pugh-sterling-2025}, but we will give a more precise and conceptual proof than appeared in \emph{op.\ cit.} On the other hand, the section property of $C^{\sigma_X}$ without side conditions is entirely new.
\begin{proposition}[{\citet{pugh-sterling-2025}}]\label[proposition]{prop:horn-tri-as-sums}
The generic inner horn $\Horn \equiv \{ (i,j) \mid \IsF{j} \lor \IsT{i}\}$ is the sum $\textstyle\sum_{(i:\II)} \IsT{i}_\bot
-
$ of all the little Sierpi\'nski cones $\IsT{i}_\bot$. Similarly the triangle $\Spx{\Two} \equiv \{(i,j) \mid i \geq j\}$ is the sum $\sum_{(i:\II)}\II/i$ of all the slices $\II/i$ of the interval.
+
$ of all the little Sierpi\'nski cones $\IsT{i}_\bot$. Similarly the triangle $\Spx{\Two} \equiv \{(i,j) \mid i \geq j\}$ is the sum $\sum_{(i:\II)}\II/i$ of all the slices $\II/i$.
\end{proposition}
\begin{construction}
We consider the following open subspaces of the inner horn and the triangle respectively:
\[
\begin{tikzcd}
-
\{(1\geq i)\mid i:\II\} \ar[r] \ar[d,open immersion] & \{(1\geq i)\mid i:\II\}\ar[r]\ar[d,open immersion] & \{1\} \ar[d,open immersion]
+
|[pullback]|\{(1\geq i)\mid i:\II\} \ar[r] \ar[d,open immersion] & |[pullback]|\{(1\geq i)\mid i:\II\}\ar[r]\ar[d,open immersion] & \{1\} \ar[d,open immersion]
\\
\Horn \ar[r,hookrightarrow] & \Spx{\Two} \ar[r, "\max"'] & \II
\end{tikzcd}
···
X^{\IsT{\max \alpha}}
\end{align*}
and there is an evident inclusion
-
\[
+
$
\HornLift(X)\hookrightarrow \TriLift(X)
-
\]
+
$
induced by the inclusion $\Horn\hookrightarrow\Spx{\Two}$.
\end{construction}
···
\end{construction}
\begin{lemma}\label[lemma]{con:tau}
-
The evaluation map \[ \epsilon_X^\Delta \colon \TriLift(X)\to \Lift(X)\] has a section $\tau_X\colon \Lift(X)\to \TriLift(X)$ induced by the diagonal function $\delta\colon \II\hookrightarrow\Spx{\Two}$ sending $i:\II$ to the generic element $(i\geq i)\in\Spx{\Two}$. In particular, we define
+
The evaluation map $ \epsilon_X^\Delta \colon \TriLift(X)\to \Lift(X)$ has a section $\tau_X\colon \Lift(X)\to \TriLift(X)$ induced by the diagonal function $\delta\colon \II\hookrightarrow\Spx{\Two}$ sending $i:\II$ to the generic element $(i\geq i)\in\Spx{\Two}$. In particular, we define
\tau_X(i,x) :\equiv (\delta i, x)
···
\end{tikzcd}
\]
-
The upper and lower maps are the depedendent currying/uncurrying equivalences, recalling \cref{prop:horn-tri-as-sums}. The right-hand map is the product of the restriction maps along $\IsT{i}_\bot\hookrightarrow\II/i$, which are equivalences by assumption. By the three-for-two property, the left-hand map is an equivalence too.
+
The upper and lower maps are the depedendent currying/uncurrying equivalences, recalling \cref{prop:horn-tri-as-sums}. The right-hand map is the product of the restriction maps along $\IsT{i}_\bot\hookrightarrow\II/i$, which are equivalences by assumption. We finish with the three-for-two property of equivalences.
\end{proof}
-
\begin{lemma}
-
Let $C$ be an upper Segal complete type. Then for $\IsF{1}$-connected $X$ the restriction map \[ C^{\sigma_X} \colon (\Lift(X)\to C) \to (X_\bot\to C)\] has a retraction.
-
\end{lemma}
+
\begin{proposition}[{\citet{pugh-sterling-2025}}]
+
Let $C$ be upper Segal complete. Then for $\IsF{1}$-connected $X$ the restriction map $C^{\sigma_X} \colon (\Lift(X)\to C) \to (X_\bot\to C)$ has a retraction.
+
\end{proposition}
+
+
As mentioned, our construction differs from that of \emph{op.\ cit.}
\begin{proof}
We consider the following diagram summarising \cref{con:evaluation-maps,con:tau}:
···
The composite map $C^{X_\bot}\to C^{\Lift(X)}$ traced above is immediately seen to be a retraction of $C^{\sigma_X}$.
\end{proof}
+
+
\subsubsection{A section to the comparison map}
+
+
Constructing a section to the comparison map \[ C^{\sigma_X}\colon (\Lift(X)\to C)\to (X_\bot\to C)\] is considerably more sensitive, and we will need to first re-analyse several notions. We recall a few preliminaries from \citet{pugh-sterling-2025}.
+
+
\begin{proposition}[{\cite{pugh-sterling-2025}}]
+
We have a canonical equivalence $\mathsf{SD}_X(C) \cong C^{X_\bot}$ where $\mathsf{SD}_X(C)$ is the following type of ``Sierpi\'nski cone data'' over $C$:
+
\[
+
\mathsf{SD}_X(C) :\equiv
+
\textstyle\sum_{(c^\bot : C)}
+
\sum_{(c^\gamma \colon \II\times X\to C)}
+
\prod_{(x:X)}
+
c^\gamma(0,x) = c^\bot
+
\]
+
\end{proposition}
+
\begin{proof}
+
This is simply the universal property of $X_\bot$: the space of maps out of a pushout form a pullback.
+
\end{proof}
+
+
\begin{proposition}[{\citet{pugh-sterling-2025}}]
+
We consider the following graph structure on $\mathsf{SD}_X(C)$:
+
\begin{align*}
+
&(c^\bot_0,c^\gamma_0,c^H_0)
+
\approx_{\mathsf{SD}_X(C)}
+
(c^\bot_1,c^\gamma_1,c^H_1)
+
:\equiv
+
\\
+
&\quad
+
\textstyle
+
\sum_{(c_{01}^\bot \colon c_0^\bot = c_1^\bot)}
+
\sum_{(c_{01}^\gamma : c_0^\gamma \sim c_1^\gamma)}
+
\\
+
&\quad\textstyle
+
\prod_{(x:X)}
+
c_0^Hx \bullet c_{01}^\gamma(0,x)
+
=
+
c_{01}^\bot \bullet c_1^Hx
+
\end{align*}
+
+
For each $\mathbf{c}:\mathsf{SD}_X(C)$, the corresponding family \[ \mathbf{c}':\mathsf{SD}_X(C)\vdash \textstyle\sum_{(\mathbf{c}':\mathsf{SD}_X(C))}\mathbf{c}\approx_{\mathsf{SD}_X(C)}\mathbf{c}' \] of ``fans extending from $\mathbf{c}$'' is torsorial in the sense that its sum is constractible. Hence from the fundamental theorem of identity types~\citep{Rijke_2025} we obtain a canonical family of equivalences
+
\[
+
\mathbf{c}_0,\mathbf{c}_1 : \mathsf{SD}_X(C)\vdash
+
\mathbf{c}_0=\mathbf{c}_1
+
\to \mathbf{c}_0\approx_{\mathsf{SD}_X(C)}\mathbf{c}_1\text{.}
+
\]
+
\end{proposition}
+
+
\begin{definition}
+
For $\IsF{1}$-connected $X$, the \emph{Sierpi\'nski restriction} of a $f\colon \Lift(X)\to C$ is defined be the following Sierpi\'nski cone datum over $C$:
+
\begin{align*}
+
\mathsf{r}_f^\bot &:\equiv f (0,?)
+
\end{align*}
+
\textcolor{red}{I think I actually need to replace $\IsF{1}$-connectedness with $\IsT{0}$-connectedness.}
+
\end{definition}
+
+
Now we reformulate the data of a section to $C^{\sigma_X}$ in terms of \emph{extensions} of Sierpi\'nski cone data.
+
+
\begin{definition}
+
For $\IsF{1}$-connected $X$, an \emph{extension} of a Sierpi\'nski cone datum $\mathbf{c}:\mathsf{SD}_X(C)$ is defined to be a mapping
+
\end{definition}
+
+
\section{Existence of logical mapping cylinders}
+12 -1
refs.bib
···
pages = {141--179},
title = {Fibrations and partial products in a 2-category},
volume = {1},
-
}
+
}
+
+
@mastersthesis{schipp-von-branitz:2020:thesis,
+
author = {Schipp von Branitz, Johannes},
+
school = {Technische Universit\"{a}t Darmstadt},
+
url = {https://jsvb.xyz/files/master.pdf},
+
year = {2020},
+
month = oct,
+
title = {Higher Groups via Displayed Univalent Reflexive Graphs in Cubical Type Theory},
+
}
+
+
@book{Rijke_2025, place={Cambridge}, series={Cambridge Studies in Advanced Mathematics}, title={Introduction to Homotopy Type Theory}, publisher={Cambridge University Press}, author={Rijke, Egbert}, year={2025}, collection={Cambridge Studies in Advanced Mathematics}}